Neutrino Masses and Mixing

Neutrino Mixing versus Quark Mixing

Leptons

Quarks

Tri-bimaximal neutrino mixing:

$$
U_{\text{TBM}} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -\sqrt{1/6} & 1/\sqrt{3} & -1/\sqrt{2} \\ -\sqrt{1/6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}
$$

(Harrison, Perkins, Scott 1999)

The Mass Puzzle

Heavy Majorana Neutrino

- Connection with high mass scales
- With CP violation provides a basis for "leptogenesis"
- Majorana neutrinos ($\text{v}=\overline{\text{v}}$)

Goals for the future

- •Determine mass values
- •• Is neutrino = antineutrino?
- •• Establish θ_{13} non-zero
- •• Measure CP violation (matter -antimatter difference)

Double-beta decay: beta

a second second-order process order only detectable if first order beta decay is energetically forbidden

Candidate nuclei with Q>2 MeV

Candidate Q Abund. (MeV) (%)

There are two varieties of ββ decay

2ν **mode:**

a conventional 2 d d n or der process in nuclear physics **0** ν **mode: a hypothetical process can happen only if: ν = ν (Majorana) |∆L|=2 |∆(B-L)|=2** $\mathbf{M}_{\mathrm{v}} \neq \mathbf{0}$ (helicity flip)

Summed electron energy in units of the kinematic endpoint (Q)
 $\frac{\alpha}{2}$
 E
 Fig. The two can be separated in a detector with good energy resolution

8

Neutrinoless ββ **Decay**

Whatever processes cause 0νββ, its observation would imply the existence of a Majorana mass term and thus **would represent New Physics:** Schechter and Valle, 82

$$
\begin{array}{c}\n e^{-} \\
\hline\n 0 \vee \beta \beta \\
\downarrow \\
u^{\vee} \quad d \quad d \quad \vee u\n \end{array}
$$

By adding only Standard model interactions we obtain

 $(v)_{R} \rightarrow (v)_{L}$ *Majorana mass term*

 \rightarrow Observing the $0\nu\beta\beta$ decay implies that ν are massive Majorana particles.

Majorana Phases

Most general form for 3 generation flavor mixing:

 \cdot α 's are CP violating phases (as is $\delta)$ \cdot α 's do not contribute to oscillations)

OvBB Theory

$$
[T_{1/2}^{0\nu}(0^+ \to 0^+)]^{-1} = G^{0\nu}(E_0, Z) \left| M_{GT}^{0\nu} - \frac{g_V^2}{g_A^2} M_F^{0\nu} \right|^2 \langle m_{\beta\beta} \rangle^2 , \qquad (37)
$$

where $G^{0\nu}$ is the exactly calculable phase space integral, $\langle m_{\beta\beta} \rangle$ is the effective neutrino mass and $M_{GT}^{0\nu}$, $M_{F}^{0\nu}$ are the nuclear matrix elements.

The effective neutrino mass is

$$
\langle m_{\beta\beta} \rangle = |\sum_{i} |U_{ei}|^2 m_{\nu_i} e^{i\alpha_i} | \tag{38}
$$

where the sum is only over light neutrinos $(m_i < 10 \text{ MeV})^4$. The Majorana phases α_i were defined earlier in Eq. (9). If the neutrinos ν_i are CP eigenstates, α_i is either 0 or π . Due to the presence of these unknown phases, cancellation of terms in the sum in Eq.(38) is possible, and $\langle m_{\beta\beta} \rangle$ could be smaller than any of the m_{ν_i} .

Nuclear Matrix Elements

The nuclear matrix elements, Gamow-Teller and Fermi, appear in the combination

$$
M_{GT}^{0\nu} - \frac{g_V^2}{g_A^2} M_F^{0\nu} \equiv \langle f | \sum_{lk} H(r_{lk}, \bar{E}_m) \tau_l^+ \tau_k^+ \left(\vec{\sigma}_l \cdot \vec{\sigma}_k - \frac{g_V^2}{g_A^2} | i \rangle \right) \,. \tag{39}
$$

The summation is over all nucleons, $|i\rangle$, $(|f\rangle)$ are the initial (final) nuclear states, and $H(r_{lk}, \bar{E}_m)$ is the 'neutrino potential' (Fourier transform of the neutrino propagator) that depends (essentially as $1/r$) on the internucleon distance. When evaluating these matrix elements the short-range nucleonnucleon repulsion must be taken into account due to the mild emphasis on small nucleon separations.

Much progress made recently in accuracy of nuclear matrix elements. (e.g. was found that main uncertainly in (R)QRPA calculations comes from the single particle space around the Fermi surface.

nucleus will be needed to pin down neutrino masses

for 76Ge

ββ **is the search for a** *very* **rare peak on a continuum of background.**

> \sim 70 kg-years of data **13 years**

The "feature" at 2039 keV is arguably present.

BB Decay Experiments

17

Future experiments (a very broad brush, personal view)

Each exp above has a US component and some US funding. Funding source listed only if "major". Experiments in red are US led.

- No isotopic enrichment in baseline design
- [†] Plan to merge efforts for ton-scale experiment

* Non-homogeneous detector

Back to Neutrino Mixing…

Maki - Nakagawa - Sakata Matrix

Reactor θ₁₃ Neutrino Experiments

Under construction.

Proposed and R&D.

- "Clean" measurements of θ , Δm^2
- No CP violation
- Negligible matter effects

Daya Bay Nuclear Power Plant

- 4 reactor cores, 11.6 GW
- 2 more cores in 2011, 5.8 GW
- \bullet Mountains provide overburden to shield cosmic-ray backgrounds
- Baseline ~2km
- \bullet Multiple detectors \rightarrow measure ratio

Daya Bay NPP

857

1307

LA cores

LA II cores

Experiment Layout

1618

1613

481

526

• Multiple detectors per site cross-check detector efficiency

• Two near sites sample flux from reactor groups

Total Tunnel length ~ 3000 m

Redundant veto system \rightarrow 99.5% efficient muon rejection

Site Preparation

4m Acrylic Vessel Prototype

90% CL, 3 years

- Ex periment construction: 2008-2011
- Start acquiring data: 2011
- 3 years running

- •October 2007: Ground breaking
- •August 2008: CD3 review (DOE start of construction)
- •March 2009: Surface Assembly Building occupancy
- \bullet Summer 2009: Daya Bay Near Hall occupancy
- \bullet Fall 2009: First AD complete
- \bullet Summer 2010: Daya Bay Near Hall ready for data
- Summer 2011: Far Hall ready for data (3 years of data taking to reach goal sensitivity)

NOvA - New Fermilab Proposal

VO_V

The Ash River site is the furthest available site from Fermilab along the NuMI beamline. This maximizes NO_vA's sensitivity to the mass ordering.

Gary Feldman P5 at Fermilab 18 April 5

 $L = 810$ km

Water Cerenkov vs. Liquid Argon TPC

Mass Hierarchy and CP Violation

http://nwg.phy.bnl.gov/ diversify wg/fnal-bnl/ 38

Large Underground Detector

- Long Baseline Neutrino Oscillations
- Nucleon decay (B violation, Mass scale< $\mathsf{M}_{\mathsf{GUT}}$?)
- Supernova neutrino detection (θ_{13} , r-process?)

Evolution of 18 solar mass star

Neutrino spectra

The gravitational energy of the collapsed core (a few 10^{53} ergs) is radiated away in neutrinos of all types. There is a large luminosity in neutrinos (L_{ν} > 10⁵² ergs/s) for nearly 10 seconds, before it decreases. The luminosity is nearly the same for all neutrino types and is maintained by mass accretion onto the proto-neutron star where the kinetic energy of infall is converted into thermal energy. The neutrinos have approximately the Fermi-Dirac spectra with zero chemical potential. Then

 $\langle E_{\nu} \rangle = \pi T_{\nu}$; $\langle E_{\nu}^2 \rangle \approx 6 T_{\nu}^2$

The average energy of the emitted neutrinos (\sim 15 MeV) is much less than the energy of neutrinos produced in the high-density core (\sim 150 MeV). When the neutrinos diffuse out of this core, they are down-scattered in energy. As they carry away the entire energy, there are about 10 neutrinos emitted for every one produced in the center. -990

Supernova Neutrino Detection

SN1987A: \sim 20 \overline{v}_e p \rightarrow e⁺n events SN200??: $\sim 10^4$ CC events $\sim 10^3$ NC events

Spectrum modification due to neutrino mixing

