Neutrino Masses and Mixing

Neutrino Mixing versus Quark Mixing

Leptons

	0.85	0.52 <	∶0.053∖	
$U_\ell = -$	- 0.33	0.62	-0.72	
	\-0.40	0.59	0.70	
Nhy .	so dif	feren	<i>†???</i>	
	(0.976	0.22	0.003	١
$V_q =$	-0.22	0.98	0.04	
	0.007	-0.04	1	

Quarks

Tri-bimaximal neutrino mixing:

$$U_{\text{TBM}} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0\\ -\sqrt{1/6} & 1/\sqrt{3} & -1/\sqrt{2}\\ -\sqrt{1/6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$$

(Harrison, Perkins, Scott 1999)

The Mass Puzzle

Heavy Majorana Neutrino

- Connection with high mass scales
- With CP violation provides a basis for "leptogenesis"
- Majorana neutrinos ($v = \overline{v}$)

Goals for the future

- Determine mass values
- Is neutrino = antineutrino?
- Establish θ_{13} non-zero
- Measure CP violation (matter-antimatter difference)

Double-beta decay:

a second-order process only detectable if first order beta decay is energetically forbidden

Candidate nuclei with Q>2 MeV

Candidate Q Abund. (MeV) (%)

⁴⁸ Ca→ ⁴⁸ Ti	4.271	0.187
⁷⁶ Ge→ ⁷⁶ Se	2.040	7.8
⁸² Se→ ⁸² Kr	2.995	9.2
⁹⁶ Zr→ ⁹⁶ Mo	3.350	2.8
$^{100}Mo \rightarrow ^{100}Ru$	3.034	9.6
¹¹⁰ Pd→ ¹¹⁰ Cd	2.013	11.8
$^{116}Cd \rightarrow ^{116}Sn$	2.802	7.5
¹²⁴ Sn→ ¹²⁴ Te	2.228	5.64
130 Te \rightarrow 130 Xe	2.533	34.5
¹³⁶ Xe→ ¹³⁶ Ba	2.479	8.9
$^{150}Nd \rightarrow ^{150}Sm$	3.367	5.6

There are two varieties of $\beta\beta$ decay

2∨ mode: a conventional 2nd order process in nuclear physics Ov mode: a hypothetical process can happen only if: $v = \overline{v}$ (Majorana) $|\Delta L| = 2$ $|\Delta (B-L)| = 2$ $M_v \neq 0$ (helicity flip)

Background due to the Standard Model $2v\beta\beta$ decay

Summed electron energy in units of the kinematic endpoint (Q)

<u>The two can be separated in a detector with</u> <u>good energy resolution</u>

8

Neutrinoless ββ **Decay**

Whatever processes cause $0\nu\beta\beta$, its observation would imply the existence of a Majorana mass term and thus would represent New Physics: Schechter and Valle,82

$$\begin{array}{c|c} e^{-} & 0\nu\beta\beta & e^{-} \\ & u & d & u \\ \end{array}$$

By adding only Standard model interactions we obtain

 $(\overline{v})_{R} \rightarrow (v)_{L}$ Majorana mass term

 \rightarrow Observing the $0\nu\beta\beta$ decay implies that ν are massive Majorana particles.

Majorana Phases

Most general form for 3 generation flavor mixing:

α's are CP violating phases (as is δ)
α's do not contribute to oscillations)

$0\nu\beta\beta$ Theory

$$[T_{1/2}^{0\nu}(0^+ \to 0^+)]^{-1} = G^{0\nu}(E_0, Z) \left| M_{GT}^{0\nu} - \frac{g_V^2}{g_A^2} M_F^{0\nu} \right|^2 \langle m_{\beta\beta} \rangle^2 , \qquad (37)$$

where $G^{0\nu}$ is the exactly calculable phase space integral, $\langle m_{\beta\beta} \rangle$ is the effective neutrino mass and $M_{GT}^{0\nu}$, $M_F^{0\nu}$ are the nuclear matrix elements.

The effective neutrino mass is

$$\langle m_{\beta\beta} \rangle = |\sum_{i} |U_{ei}|^2 m_{\nu_i} e^{i\alpha_i}| , \qquad (38)$$

where the sum is only over light neutrinos $(m_i < 10 \text{ MeV})^4$. The Majorana phases α_i were defined earlier in Eq.(9). If the neutrinos ν_i are *CP* eigenstates, α_i is either 0 or π . Due to the presence of these unknown phases, cancellation of terms in the sum in Eq.(38) is possible, and $\langle m_{\beta\beta} \rangle$ could be smaller than any of the m_{ν_i} .

Nuclear Matrix Elements

The nuclear matrix elements, Gamow-Teller and Fermi, appear in the combination

$$M_{GT}^{0\nu} - \frac{g_V^2}{g_A^2} M_F^{0\nu} \equiv \langle f | \sum_{lk} H(r_{lk}, \bar{E}_m) \tau_l^+ \tau_k^+ \left(\vec{\sigma}_l \cdot \vec{\sigma}_k - \frac{g_V^2}{g_A^2} | i \rangle \right) .$$
(39)

The summation is over all nucleons, $|i\rangle$, $(|f\rangle)$ are the initial (final) nuclear states, and $H(r_{lk}, \bar{E}_m)$ is the 'neutrino potential' (Fourier transform of the neutrino propagator) that depends (essentially as 1/r) on the internucleon distance. When evaluating these matrix elements the short-range nucleonnucleon repulsion must be taken into account due to the mild emphasis on small nucleon separations. Much progress made recently in accuracy of nuclear matrix elements. (e.g. was found that main uncertainly in (R)QRPA calculations comes from the single particle space around the Fermi surface.

 \rightarrow Can use the measured $2\nu\beta\beta$ T_{1/2} to make a correction.)

Still, if/once $Ov\beta\beta$ decay is discovered, the $T_{1/2}$ in more than one nucleus will be needed to pin down neutrino masses

 $\beta\beta$ is the search for a <u>very</u> rare peak on a continuum of background.

> ~70 kg-years of data 13 years

The "feature" at 2039 keV is arguably present.

ββ Decay Experiments

17

Future experiments (a very broad brush, personal view)

Isotope	Experiment	Main principle	Fid mass	Lab	Main US funding	Lead continent
⁷⁶ Ge	Majorana [†]	Eres,2site tag, Cu shield	30-60kg	SUSEL	DoE-NP NSF	N America
	Gerda [†]	Eres,2site tag, LAr shield	34.3 kg	G Sasso		Europe
	MaGe/GeMa	See above	~1ton	DUSEL? GS?	DoE-NP NSF	EU? NAm?
¹⁵⁰ Nd	SNO+	Size/shielding	56 kg	SNOlab		N America
¹⁵⁰ Nd or ⁸² Se	SuperNEMO [‡]	Tracking	100 kg	Canfranc Frejus		Europe
¹³⁰ Te*	CUORE	E Res.	204 kg	G Sasso	DoE-NP NSF	Europe
¹³⁶ Xe	EXO	Tracking	150 kg	WIPP	DoE-HEP	N America
		Ba tag, Track	1-10ton	DUSEL?	DoE-HEP NSF	

Each exp above has a US component and some US funding. Funding source listed only if "major". Experiments in red are US led.

- No isotopic enrichment in baseline design
- [†] Plan to merge efforts for ton-scale experiment

[‡] Non-homogeneous detector

Back to Neutrino Mixing...

<u> Maki – Nakagawa – Sakata Matrix</u>

Reactor θ_{13} Neutrino Experiments

Under construction.

Proposed and R&D.

- "Clean" measurements of θ , Δm^2
- No CP violation
- Negligible matter effects

Daya Bay Nuclear Power Plant

- 4 reactor cores, 11.6 GW
- 2 more cores in 2011, 5.8 GW
- Mountains provide overburden to shield cosmic-ray backgrounds
- Baseline ~2km
- Multiple detectors \rightarrow measure <u>ratio</u>

Daya Bay NPP

LA cores

LA II cores

857

1307

481

526

1618

1613

Experiment Layout

• Multiple detectors per site cross-check detector efficiency

 Two near sites sample flux from reactor groups

Total Tunnel length ~ 3000 m

Redundant veto system \rightarrow 99.5% efficient muon rejection

Site Preparation

<image>

4m Acrylic Vessel Prototype

90% CL, 3 years

- Experiment construction: 2008-2011
- Start acquiring data: 2011
- 3 years running

- October 2007: Ground breaking
- August 2008: CD3 review (DOE start of construction)
- March 2009: Surface Assembly Building occupancy
- Summer 2009: Daya Bay Near Hall occupancy
- Fall 2009: First AD complete
- Summer 2010: Daya Bay Near Hall ready for data
- Summer 2011: Far Hall ready for data

(3 years of data taking to reach goal sensitivity)

NOvA - New Fermilab Proposal

The Ash River site is the furthest available site from Fermilab along the NuMI beamline. This maximizes NOvA's sensitivity to the mass ordering.

L = 810 km

Water Cerenkov vs. Liquid Argon TPC

Mass Hierarchy and CP Violation

http://nwg.phy.bnl.gdv/*~dlwan/hwg/fnal-bnl/

Large Underground Detector

- Long Baseline Neutrino Oscillations
- Nucleon decay (B violation, Mass scale< M_{GUT}?)
- Supernova neutrino detection (θ_{13} , r-process?)

Evolution of 18 solar mass star

Neutrino spectra

The gravitational energy of the collapsed core (a few 10^{53} ergs) is radiated away in neutrinos of all types. There is a large luminosity in neutrinos ($L_{\nu} > 10^{52}$ ergs/s) for nearly 10 seconds, before it decreases. The luminosity is nearly the same for all neutrino types and is maintained by mass accretion onto the proto-neutron star where the kinetic energy of infall is converted into thermal energy. The neutrinos have approximately the Fermi-Dirac spectra with zero chemical potential. Then

 $\langle E_{\nu}
angle = \pi T_{\nu}; \ \langle E_{\nu}^2
angle pprox 6 T_{\nu}^2$

The average energy of the emitted neutrinos (~ 15 MeV) is much less than the energy of neutrinos produced in the high-density core (~ 150 MeV). When the neutrinos diffuse out of this core, they are down-scattered in energy. As they carry away the entire energy, there are about 10 neutrinos emitted for every one produced in the center.

ACC

Supernova Neutrino Detection

SN1987A: ~ 20 $\overline{v}_e p \rightarrow e^+ n$ events SN200??: $\sim 10^4$ CC events $\sim 10^3$ NC events

Spectrum modification due to neutrino mixing

