SUPERALLOWED NUCLEAR DECAY: Precision measurements for basic physics

J.C. Hardy Cyclotron Institute Texas A&M University

SUPERALLOWED $0^+ \rightarrow 0^+$ BETA DECAY

BASIC WEAK-DECAY EQUATION

$$ft = \frac{K}{G_v^2 < >^2}$$

f = statistical rate function: $f(Z, Q_{EC})$ t = partial half-life: $f(t_{1/2}, BR)$ G_v = vector coupling constant < > = Fermi matrix element

Reference: Hardy & Towner, Phys. Rev. C79, 055502 (2009)

SUPERALLOWED $0^+ \rightarrow 0^+$ BETA DECAY

BASIC WEAK-DECAY EQUATION

$$ft = \frac{K}{G_v^2 < >^2}$$

f = statistical rate function: $f(Z, Q_{EC})$ t = partial half-life: $f(t_{1/2}, BR)$ G_v = vector coupling constant < > = Fermi matrix element

INCLUDING RADIATIVE CORRECTIONS

THEORETICAL UNCERTAINTIES 0.05 – 0.10%

WHAT CAN WE LEARN?

FROM A SINGLE TRANSITION

Experimentally determine $G_v^2(1 + R)$

$$\mathcal{T}t = ft(1 + i_{R})[1 - (i_{C} - i_{NS})] = \frac{K}{2G_{V}^{2}(1 + i_{R})}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)

Validate the correction terms

Test for presence of a Scalar current

7*t* values constant

WITH CVC VERIFIED

$$\begin{pmatrix} d'\\ s'\\ b'\\ b'\\ eigenstates \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\ V_{ud} & V_{us} & V_{ub}\\ V_{cd} & V_{cs} & V_{cb}\\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\ s\\ b\\ b\\ cd \end{pmatrix} = \begin{pmatrix} Obtain precise value of G_v^2 (1 + R)\\ Obtain precise value of G_v^2 (1 + R)\\ Determine V_{ud}^2 \end{pmatrix} \begin{pmatrix} V_{ud}^2 = G_v^2/G^2 \\ V_{ud}^2 = V_{us}^2 + V_{ub}^2 = 1 \end{pmatrix}$$

WORLD DATA FOR $0^+ \rightarrow 0^+$ DECAY, 2008

Ν

NUMBER OF PROTONS,

Z of daughter

RESULTS FROM 0⁺→ 0⁺ DECAY IN 2008

1) G_v constant

$$7t = \frac{K}{2G_v^2(1 + R)}$$

✓ verified to ± 0.013%

RESULTS FROM 0⁺→ 0⁺ DECAY IN 2008

1) G_v constant

$$7t = \frac{K}{2G_v^2(1 + R)}$$

✓ verified to ± 0.013%

2) Correction terms validated

RESULTS FROM 0^+ \rightarrow 0^+ DECAY IN 2008

1) G_v constant

$$7t = \frac{K}{2G_v^2(1 + R)}$$

 \checkmark verified to $\pm 0.013\%$

2) Correction terms validated

3) Scalar current zero \checkmark limit, $C_s/C_v = 0.0011$ (14)

RESULTS FROM 0⁺→ 0⁺ DECAY IN 2008

1) G_v constant

$$7t = \frac{K}{2G_v^2(1 + R)}$$

✓ verified to ± 0.013%

2) Correction terms validated

3) Scalar current zero \checkmark limit, $C_s/C_v = 0.0011$ (14)

4) Precise value determined for V_{ud}

$$V_{ud} = \frac{G_v}{G}$$

 $V_{ud} = 0.97424 \pm 0.00022$

CURRENT STATUS OF V_{ud} – 2009

CURRENT STATUS, 2009

- 1. The best value for V_{ud} is obtained from superallowed $0^+ \rightarrow 0^+$ nuclear beta decays; it is more precise than the values from neutron and nuclear mirror decays by nearly a factor of ten.
- 2. The predominant contribution to the nuclear uncertainty is from the radiative correction. The symmetry-breaking corrections contribute less, and experiment contributes least of all.
- 3. The isospin-symmetry-breaking corrections are confirmed by consistent results from thirteen separate transitions.
- 4. The nuclear results confirm CVC, limit scalar currents and yield the current best value for V_{ud}, which satisfies CKM unitarity:

5. Improvements are still possible if uncertainties can be reduced on the radiative corrections and on the symmetry-breaking corrections.

Strategy is to probe the nucleus-to-nucleus variation in $_{\rm c}$ - $_{\rm NS}$.

* Increase measured precision on nine best *ft*-values

- * Increase measured precision on nine best *ft*-values
- * measure new $0^+ \rightarrow 0^+$ decays with $18 \le A \le 42$ (T_z = -1)

- * Increase measured precision on nine best *ft*-values
- * measure new $0^+ \rightarrow 0^+$ decays with $18 \le A \le 42$ (T_z = -1)
- * measure new $0^+ \rightarrow 0^+$ decays with A \geq 62 (T_z = 0)

- * Increase measured precision on nine best *ft*-values
- * measure new $0^+ \rightarrow 0^+$ decays with $18 \le A \le 42$ (T_z = -1)
- * measure new $0^+ \rightarrow 0^+$ decays with A \geq 62 (T_z = 0)

PRECISION REQUIRED FROM EXPERIMENT

$$7t = ft(1 + '_{R})[1 - (_{C} - _{NS})] = \frac{K}{2G_{V}^{2}(1 + _{R})}$$

< 0.1%

Precision required for CKM unitarity test:

PRECISION REQUIRED FROM EXPERIMENT

$$7t = ft(1 + \frac{7}{R})[1 - (c - Ns)] = \frac{K}{2G_v^2(1 + R)}$$

Precision required for CKM unitarity test:

< 0.1%

Precision achievable for calculated corrections: 0.05-0.10%

PRECISION REQUIRED FROM EXPERIMENT

$$7t = ft(1 + '_{R})[1 - (_{C} - _{NS})] = \frac{K}{2G_{V}^{2}(1 + _{R})}$$

GUIDELINES FOR PRECISION MEASUREMENTS

- Experimental apparatus should be as simple as possible.
- All experimental parameters must be under control and testable.
- Experimental equipment should be dedicated only to this measurement.
- Calibration is often the most important part of the measurement.
- Tests for sources of systematic error must dominate data acquisition.
- Redundancy is desirable in both measurement and analysis.
- No inconsistencies can be overlooked.
- A complete error budget is the most important part of the result.

BRANCHING-RATIO MEASUREMENTS

PRECISION DECAY MEASUREMENTS AT TAMU

PRECISION DECAY MEASUREMENTS AT TAMU

HPGe DETECTOR CALIBRATION

Commercial standard sources:

Relative intensities not known in any case to better than 0.4%.

Source activity (absolute intensity) can be specified to 2-5%; rarely to 1%.

For higher precision:

Source activity for certain cases can be measured to 0.1% by 4 coincidence counting; in our case ⁶⁰Co at PTB Lab. ←

Use clean -ray cascades; home-made sources.

Combine Monte Carlo calculations with measured points.

KEY RADIOACTIVE SOURCES

EG&G ORTEC Gamma-X HPGe

DIMENSION

NOMINAL

Crystal radius, R	34.95 mm
Crystal active length, $L - t_{f} - t_{b}$	77.7 mm
Cap face to crystal distance, D	5.6 mm
Hole radius, r	5.8 mm
Hole depth, d	69.7 mm
Depth internal (Li) dead layer, t ₁	>1 mm
Depth front dead layer, t _f	>0.3 m

X-ray picture of crystal

EG&G ORTEC Gamma-X HPGe

X-ray picture of crystal

Crystal side-scan

EG&G ORTEC Gamma-X HPGe

X-ray picture of crystal

Crystal side-scan

Distance ratio for ⁵⁷Co

EG&G ORTEC Gamma-X HPGe

X-ray picture of crystal

Crystal side-scan

Distance ratio for ⁵⁷Co

Fitted for energy dependence

DETECTOR EFFICIENCY 50 keV < E < 1.4 MeV

Source measurements

vs unscaled Monte Carlo calculations

Physical properties and location of HPGe crystal measured precisely

10 sources recorded -

4 key sources, 3 locally made, have pure cascades

⁶⁰Co source from PTB with activity known to ± 0.1%

DETECTOR EFFICIENCY 50 keV < E < 1.4 MeV

●⁶⁰Co

■ ¹⁰⁹Cd

◆^{108m}Ag

● ^{120m} Sb

O¹³⁴Cs

■ ¹³⁷Cs

♦⁴⁸Cr

● ¹³³ Ba

▲^{180m}Hf

A88Y

Source measurements

vs unscaled Monte Carlo calculations

Physical properties and location of HPGe crystal measured precisely

10 sources recorded -

4 key sources, 3 locally made, have pure cascades

⁶⁰Co source from PTB with activity known to ± 0.1%

DETECTOR CHARACTERIZATION - DETAILS

Efficiency extended up to 3.5 MeV

DETECTOR CHARACTERIZATION - DETAILS

BRANCHING-RATIO RESULTS

Where no ground-state decay occurs, a -ray spectrum and relative efficiencies are enough to obtain branching ratios.

Hardy et al., PRL 91, 082501 (2003).

Where ground state decay occurs, we use the relation:

PRECISION HALF-LIFE MEASUREMENTS AT TAMU

HALF-LIFE RESULTS

IMPORTANT FEATURES

- Extremely high source purity -- separation by Z/A and range.
- Very low background
- Rapid transport (130 ms) to shielded counting position.
- Dominant dead-time, fixed and measured.

- Decay data stored cycle-by-cycle so actual instantaneous rate can be used in analysis.
- Precise statistical procedures used, all tested with Monte Carlo simulated data matched to actual experimental conditions.

HALF-LIFE RESULTS – A MORE DIFFICULT CASE

Parent and daughter have comparable half-lives and are indistinguishable with detector.

$$_{tot} = C_1 e^{-t} + C_2 e^{-2t}$$

where

HALF-LIFE RESULTS – A MORE DIFFICULT CASE

$$_{tot} = C_1 e^{-t} + C_2 e^{-2t}$$

where

HALF-LIFE RESULTS – A MORE DIFFICULT CASE

$$_{tot} = C_1 e^{-t} + C_2 e^{-2t}$$

where

- * Increase measured precision on nine best *ft*-values
- * measure new $0^+ \rightarrow 0^+$ decays with $18 \le A \le 42$ (T_z = -1)
- * measure new $0^+ \rightarrow 0^+$ decays with A \geq 62 (T_z = 0)

1. CKM unitarity is currently satisfied to within 0.06%.

- 2. This result already sets tight limits on "new physics" beyond the standard model: for example right-hand currents and extra Z bosons.
- 3. Since superallowed beta decay sets the current value for V_{ud}, any improvements of those limits in the near term will likely come from that source.
- 4. Experimental progress is still being made towards tighter uncertainties and even more stringent tests of the weak interaction.