

Nuclear Structure II experimental

Advancing Knowledge. Transforming Lives.

Sunday

Monday

The neutron dripline

Physics at and beyond the proton dripline

Nuclear ground states – Half-life measurements

Thursday

Friday

Exotic nuclei – decays

Exotic nuclei - halflives

4 basic decay modes

Advancing Knowledge. Transforming Lives.

Nuclei decay via 4 basic modes:

≻Alpha decay (Z-2, N-2)

- ➢Beta(-) decay (Z+1, N-1)
- ➢Beta(+) decay (Z-1, N+1)
- Fission into two large fragments and a few neutrons

There is also one-proton and two-proton radioactivity

Decays toward stability

Advancing Knowledge. Transforming Lives.

(A = 100 isobars)

Location of the driplines

UNIVERSITY Advancing Knowledge. Transforming Lives.

MICHIGAN STAT

Experimental task: How to find a needle in a haystack

How many neutrons can a proton bind?

Advancing Knowledge. Transforming Lives.

The limit of nuclear existence is characterized by the nucleon driplines

 B. Jonson: "The driplines are the limits of the nuclear landscape where additional protons or neutrons can no longer be kept in the nucleus - they literally drip out."

• P. G. Hansen & J. A. Tostevin: "(the dripline is) where the nucleon separation energy goes to zero."

Where is the neutron dripline?

Advancing Knowledge. Transforming Lives.

Predictive power, anybody?

																				4
³⁴ Cl	³⁵ Cl	³⁶ Cl	³⁷ Cl	³⁸ Cl	³⁹ Cl	⁴⁰ Cl	⁴¹ Cl	⁴² Cl	⁴³ Cl	⁴⁴ Cl	⁴⁵ Cl	⁴⁶ Cl	⁴⁷ Cl	⁴⁸ Cl	⁴⁹ Cl		⁵¹Cl			
³³ S	³⁴ S	³⁵ S	³⁶ S	³⁷ S	³⁸ S	³⁹ S	⁴⁰ S	⁴¹ S	⁴² S	⁴³ S	⁴⁴ S	⁴⁵ S	⁴⁶ S	47S	⁴⁸ S					
³² P	³³ P	³⁴ P	³⁵ P	³⁶ P	³⁷ P	³⁸ P	³⁹ P	⁴⁰ P	⁴¹ P	⁴² P	⁴³ P	⁴⁴ P	⁴⁵ P	⁴⁶ P						
³¹ Si	³² Si	³³ Si	³⁴ Si	³⁵ Si	³⁶ Si	³⁷ Si	³⁸ Si	³⁹ Si	⁴⁰ Si	⁴¹ Si	⁴² Si	⁴³ Si								
³⁰ AI	³¹ AI	³² AI	³³ AI	³⁴ Al	³⁵ AI	³⁶ AI	³⁷ AI	³⁸ AI	³⁹ AI	⁴⁰ AI	⁴¹ Al									
²⁹ Mg	³⁰ Mg	³¹ Mg	³² Mg	³³ Mg	³⁴ Mg	³⁵ Mg	³⁶ Mg	³⁷ Mg	³⁸ Mg		?					•				
²⁸ Na	²⁹ Na	³⁰ Na	³¹ Na	³² Na	³³ Na	³⁴ Na	³⁵ Na		³⁷ Na											
²⁷ Ne	²⁸ Ne	²⁹ Ne	³⁰ Ne	³¹ Ne	³² Ne		³⁴ Ne													
²⁶ F	²⁷ F		²⁹ F		³¹ F											FRD	M			
														_		HFB	-8			
'													_	HFB	-9					

Dripline history and a plan ...

Lukyanov et al., J. Phys. G 28, L41

Advancing Knowledge. Transforming Lives.

⁴⁸Ca (Z=20, N=28)

Production of ⁴⁰Mg from ⁴⁸Ca: Net loss of 8 protons with no neutrons removed!

A long way ...

Transforming Lives.

⁴⁰Mg and more!

nature T. Baumann *et al.*, Nature 449, 1022 (2007)

Advancing Knowledge. Transforming Lives.

Data taking: 7.6 days at 5 x10¹¹ particles/second 3 events of ⁴⁰Mg 23 events of ⁴²Al 1 event ⁴³Al

The existence of ^{42,43}AI ...

MICHIGAN STAT

Advancing Knowledge. Transforming Lives.

nature T. Baumann *et al.*, Nature 449, 1022 (2007)

Proof of non-existence: ²⁶O and ²⁸O

Tarasov et al., PLB 409, 64 (1997)

MICHIGAN STATE

Advancing Knowledge. Transforming Lives.

Guillemaud-Mueller et al., PRC 41, 937 (1990)

³⁶S on Ta at 78 MeV/u (GANIL)

Report absence of ²⁸O in the systematics of produced N=20 isotones

Advancing Knowledge. Transforming Lives.

One-proton radioactivity – Direct proton emission from ground states or isomeric excited states (heaviest proton emitter ¹⁸⁵Bi (isomeric state), the heaviest gs emitter: ¹⁷⁷TI

β-delayed charged particle emission (βp, β2p, for heavier nuclei $\beta\alpha$, $\beta\alpha p$) – Half-lives are dominated by β-decay, proton emission proceeds at half-lives of femto seconds or shorter \rightarrow not considered as "proton radioactivity"

Two-proton radioactivity – Two-proton emission from even-Z nuclei, for which, due to the pairing force, one proton emission is energetically forbidden, while two-proton emission is allowed (so far, ⁴⁵Fe, ⁵⁴Zn, indications in ⁴⁸Ni)

Where is the proton dripline?

Proton radioactivity/emission

Advancing Knowledge. Transforming Lives.

Light proton emitters:

- (Very) short lifetimes due to small Coulomb and no or very small angular momentum barrier (l=0,1,2)
- Produced in transfer reactions or fragmentation
- Identify by complete kinematic reconstruction in flight

Heavy proton emitters

Advancing Knowledge. Transforming Lives.

- Long lifetimes due to Coulomb and angular momentum barrier
- Typically produced in fusion evaporation reactions or fragmentation
- Separate and subsequently stop in a detector for identification
- Use segmented silicon strip detectors for a delayed decay (e.g., DSSD)

Adapted from C. N. Davids

First Proton Radioactivity 1970

Proton emitters between Z=53 and 83

Advancing Knowledge. Transforming Lives.

B. Blank and M.J.G. Borge, PPNP 60, 403 (2008)

Half-life dependence on angular momentum and energy

Advancing Knowledge. Transforming Lives.

P. J. Woods and C. N. Davids, ARNPS 47, 541 (1997)

β-delayed proton emitters *The decay of ²²AI*

Two-proton radioactivity

- Predicted by Goldanskii in 1960
- Discovered recently in ⁴⁵Fe, ⁵⁴Zn and possibly ⁴⁸Ni
- Implantation/Decay (Long lifetimes)
 - Beta-Delayed Emitters
 - Ground-State Emitters
- Light two-proton emitters: In-Flight decay (Short lifetimes)

Potential two proton emitters

Advancing Knowledge. Transforming Lives.

Adapted from M. Thoennessen

Definitions

Light two-proton emitters

Production and identification of short-lived nuclei

Advancing Knowledge. Transforming Lives.

Adapted from M. Thoennessen

Decay energy spectrum of ¹²O

Advancing Knowledge. Transforming Lives.

$$E_{\text{Decay}} = 1.77(02) \text{ MeV}$$
 $\Gamma = 578(205) \text{ keV}$

R. A. Kryger et al., PRL 74, 860 (1995)

Two-proton angular distribution

Advancing Knowledge. Transforming Lives.

R. A. Kryger et al., PRL 74, 860 (1995)

Two-proton radioactivity Predictions

Advancing Knowledge. Transforming Lives.

- ${}^{38}\text{Ti}$ (0.4-2.3)x10⁻¹² ms
- ³⁹Ti 0.4-2000 ms
- 45 Fe 10-5-10-1 ms
- ⁴⁸Ni 0.01-3660 ms
- ⁶³Se 0.3-5000 ms

W. E. Ormand, PRC 55, 2407 (1997) W. E. Ormand, PRC 53, 2145 (1996) B. A. Brown, PRC 43, R1513 (1991)

⁴⁵Fe: 2-Proton Decay at GSI 2002

Transforming Lives.

Energy [keV]

M. Pfützner et al., Eur. Phys. A 14, 279 (2002)

C. Dossat et al., PRC 72, 054315 (2005)

⁴⁵Fe: 2-proton decay at GANIL (again) 2007

counts / 2 ms

10

20

decay time (ms)

30

40

⁴⁵Fe produced in 75 MeV/u
⁵⁸Ni fragmentation.
Identification of the two protons in a time projection chamber. First direct observation of the two protons

J. Giovinazzo et al., PRL 99, 102501 (2007)

MICHIGAN STA

Advancing Knowledge.

50

⁴⁵Fe: 2-proton decay in OTPC at NSCL 2007

Advancing Knowledge. Transforming Lives.

⁴⁵Fe 2p-decay caught in the act

Recorded by CCD camera (25 ms exposure). 45 Fe enters from the left, short tracks are protons (~ 600 keV) emitted 535 µs after implantation

Time profile of the total light intensity measured by photomultiplier tube

2p radioactivity but no simple ²He (di-proton) picture

K. Miernik et al., PRL 99, 192501 (2007)

⁴⁵Fe: Correlation of the protons?

MICHIGAN STATE

J. Aysto, News and Views, Nature 439, 279 (2006)

Advancing Knowledge. Transforming Lives.

Half-lives

β-decay bulk activity measurements

Advancing Knowledge. Transforming Lives.

Implant activity in active stopper material for time t_i . Cease implantation and observe decay for time t_d .

Adapted from P. F. Mantica

Event-by-event correlation technique

Advancing Knowledge. Transforming Lives.

Reduced background from in-flight tracking and identification of individual isotopes in the beam on a particle-by-particle basis

Adapted from P. F. Mantica

Janssens, Broda, Mantica *et al.*, PLB546, 55 (2002)

Beta counting systems *Example: BCS at NSCL*

Advancing Knowledge. Transforming Lives.

NSCL Beta Counting System and Calorimeter

Prisciandaro et al., NIMA 505 (2003) 140.

Adapted from P. F. Mantica

Permits the correlation of fragment implants and subsequent beta decays on an event-by-event basis

Implant detector: 1 each MSL type BB1-1000

4 cm x 4 cm active area 1 mm thick 40 1-mm strips in x and y Calorimeter: 6 each MSL type W 5 cm active area 1 mm thick 16 strips in one dimension

¹⁰¹Sn β-decay

Take away

Transforming Lives.

• Experiments to establish the neutron dripline are hard. And the dripline might be further out than expected ... More exciting physics to be discovered!

- Spectroscopy beyond the proton dripline gives information on nuclear structure and proton-proton correlation
- Different ways to measure half-lives of short-lived nuclei
 - Bulk-activity measurements
 - Event-by-event correlation technique
 - Storage rings again

Related review articles

Advancing Knowledge. Transforming Lives.

The driplines

 Reaching the limits of nuclear stability, M. Thoennessen, Rep. Prog. Phys. 67, 1187 (2004)

Proton radioactivity

- Two-proton radioactivity, B. Blank and M. Ploszajczak, Rep. Prog. Phys. 71, 046301 (2008)
- Nuclear structure at the proton drip line: Advances with nuclear decay studies, B. Blank and M.J.G. Borge, Prog. Part. Nucl. Phys. 60, 403 (2008)
- Nuclei beyond the proton drip-line, P. J. Woods and C. N. Davids, Annu. Rev. Nucl. Part. Sci. 47, 541 (1997)

Beta decay halflives

 β and isomer spectroscopy of neutron-rich nuclei with fragmentation beams at the NSCL, P. F. Mantica, J. Phys. G: Nucl. Part. Phys. 31 (2005) S1617–S1622