

Nuclear Structure IV experimental

Advancing Knowledge. Transforming Lives.

Sunday

Monday

Thursday

Friday

Lifetimes of excited states Population of excited states in decays Shapes, rotations and simple patterns The heaviest elements Lifetimes of excited states

Lifetimes of excited 2⁺ states in even-even nuclei: picosecond range

$$\tau_{\gamma} = 40.81 \times 10^{13} E^{-5} [B(E2)\uparrow/e^2b^2]^{-1}$$

Some excited states live much longer: Isomers

Table I: Examples of extreme isomers

Nuclide	Half-life	Spin (†	n) Energy	Attribute	
¹² Be	~500 ns	0	2.2 MeV	low mass	
⁹⁴ Ag	300 ms	21	6 MeV	proton decay	
152 Er	11 ns	~36	13 MeV	high spin and energy	From P.M. Walker and J. J.
¹⁸⁰ Ta	$>10^{16}$ y	9	75 keV	long half-life	Carroll, Nuclear Physics News
²²⁹ Th	~5 h	3/2	~7.6 eV	low energy	17, 11-15 (2007)
²⁷⁰ Ds	~6 ms	~10	~1 MeV	high mass	

Plunger lifetime measurements

Advancing Knowledge. Transforming Lives.

Adapted from K. Starosta

Energy

Long-lived excited states – isomers Back to storage rings and penning traps

Advancing Knowledge. Transforming Lives.

HIGAN STA

Excited states populated in decays

Excited states populated in β decay Selectivity through selection rules

Total number of ⁵⁴Ca implants: 654 only

Selection rules in β decay, any textbook

Туре	ΔJ	$\Delta \pi$
Allowed	0,1	no
First Forbidden	$0,\!1,\!2$	yes
Second Forbidden	$1,\!2,\!3$	no
Third Forbidden	$2,\!3,\!4$	yes
Fifth Forbidden	$3,\!4,\!5$	no

P. F. Mantica et al., PRC 77, 014313 (2008)

γ -ray spectroscopy tagged with β -delayed protons

Single-neutron states above doubly magic ¹⁰⁰Sn:

$$d_{5/2} - g_{7/2} \sim 172 \text{ keV}$$

D. Seweryniak et al., PRL 101, 022504 (2007)

Excited states populated following α and proton emission

Ground state and first excited state (201 keV) of ¹⁴⁰Dy populated in proton decay of ¹⁴¹Ho

M. Karny et al., PLB 664, 52 (2008)

Follow-up on collectivity

Shapes of nuclei

Advancing Knowledge. Transforming Lives.

The general shape of a nucleus can be expressed as an expansion of spherical harmonics:

 $R = R_0 \left[1 + \sum_{\lambda=0}^{\infty} \sum_{\mu=-\lambda}^{\lambda} a_{\lambda\mu} Y_{\lambda\mu}(heta, \phi)
ight]$

• $\lambda=2$ is the most important term and describes quadrupole deformations.

$$R = R_0 \left[1 + \sum_{\mu = -2}^{2} a_{2\mu} Y_{2\mu}(\theta, \phi) \right]$$

Symmetry: all but α_{20} and α_{22} parameters are 0

Quadrupole deformation

Advancing Knowledge. Transforming Lives.

• We define:

$$a_{20} = \beta \cos \gamma$$
$$a_{22} = \frac{1}{\sqrt{2}} \beta \sin \gamma$$

• β is a measure of the quadrupole deformation, while γ is a measure of the degree of triaxiality.

• By convention (the Lund convention):

 $\beta > 0$, $\gamma = 0^{\circ}$ is axially symmetric prolate deformation $\beta < 0$, $\gamma = -60^{\circ}$ is axially symmetric oblate deformation

R_{4/2} and simple patterns

Advancing Knowledge. Transforming Lives.

Evolution of nuclear structure (as a function of nucleon number)

 $R_{4/2} = E(4^+)/E(2^+)$

Simple but powerful: R_{4/2}

Advancing Knowledge. Transforming Lives.

Shape coexistence

Advancing Knowledge. Transforming Lives.

• A nucleus can take on more than one shape and several shapes can coexist at nearly the same energies.

- This phenomenon is known as shape coexistence and one well known example is ¹⁸⁶Pb.
- There are three low-lying 0⁺ states corresponding to different shapes; spherical ($\beta=0$), oblate ($\beta<0$), and prolate ($\beta > 0$).
- The figure shows a calculated potential energy surface which

shows the minima associated with each shape.

A.Andreyev et al., Nature 405 (2000) 430

Advancing Knowledge. Transforming Lives.

Nuclear radii and spatial extent

Nuclear radii - definitions

Advancing Knowledge. Transforming Lives.

Nuclear mean square charge radius (take square root: rms charge radius $\langle r_c^2 \rangle^{1/2}$)

$$\langle \boldsymbol{r_c^2} \rangle = rac{\int\limits_{0}^{R} \rho(\boldsymbol{r}) \boldsymbol{r}^2 \, d\boldsymbol{r}}{\int\limits_{0}^{R} \rho(\boldsymbol{r}) \, d\boldsymbol{r}}$$

Mathematically:

Second radial moment of the charge distribution $\rho(\textbf{r})$

 $\langle r_m^2 \rangle^{1/2}$ rms matter radius $\langle r_n^2 \rangle^{1/2}$ rms neutron radius

Sometimes: point proton radius $\langle r_p^2 \rangle = \langle r_c^2 \rangle - 0.64 \text{ fm}^2$

proton ms radius

ODERN PHYSICS

The common wisdom from stable nuclei

VOLUME 30, NUMBER 2

APRIL, 1958

 $R = r_0 A^{1/3}$

Advancing Knowledge. Transforming Lives.

International Congress on Nuclear Sizes and Density Distributions Held at Stanford University, December 17-19, 1957 APRIL, 1958 VOLUME 30. NUMBER WS OF MODERN PHYSICS Nuclear Radii as Determined by Scattering of Neutrons S. FERNBACH University of California Radiation Laboratory, Livermore, California REVIEWS OF MODERN PHYSICS VOLUME 30. NUMBER 2 Nuclear Density Distributions from Proton Scattering A. E. GLASSGOLD Department of Physics, University of California, Berkeley, California

REVIEWS OF MODERN PHYSICS

VOLUME 30, NUMBER 2

Electron Scattering and Nuclear Charge Distributions

D. G. RAVENHALL

Department of Physics, University of Illinois

Nuclear radii: $R = r_0 A^{1/3}$?

Advancing Knowledge. Transforming Lives.

Nuclear halos, P.G. Hansen, A.S. Jensen, and B. Jonson, Annu. Rev. Part. Sci. 45, 591 (1995)

1. INTRODUCTION

A novel structural feature called the neutron halo has been found in a number of light, extremely neutron-rich nuclei. A neutron halo is basically a threshold effect resulting from the presence of a bound state close to the continuum. The combination of the low neutron separation energy and the short range of the nuclear force allows the neutron (or a cluster of neutrons) to tunnel into the space surrounding the nuclear core so that neutrons are present with appreciable probability at distances much larger than the normal nuclear radius. In this very open structure, simple few-body or cluster models will largely account for the most general properties of nuclear halos. In this review, we illustrate this aspect

2-Neutron Halo in ¹¹Li 1985

Advancing Knowledge. Transforming Lives.

I. Tanihata et al., PRL 55, 2676 (1985)

 $r_{\rm RMS}(^{11}{\rm Li}) = r_{\rm RMS}(^{208}{\rm Pb})$

PRC 54, 673 (1996).

narrow momentum distribution \rightarrow large spatial extent

Quantum mechanics also links the size of the halo, through Heisenberg's uncertainty principle, to the momenta of the constituents, which is the easier quantity to measure. This is what has been done in the pair of new experiments at Michigan State University^{1,2}, looking at the ⁹Li fragments and neutrons produced by the dissociation of ¹¹Li. Not that the experiments are straightforward. First, the radioactive ¹¹Li isotopes have to be made by slamming ¹⁸O ions into a beryllium foil. They then have to be selected from the debris of the collision by magnetic analysis and directed at a second metal target. The intensity of the secondary beam is a mere 300-1,500 ¹¹Li atoms per second, depending on the requirements.

Extended spatial distributions – Halo systems

Advancing Knowledge. Transforming Lives.

narrow momentum distribution \rightarrow large spatial extent

- S800 (NSCL)
- FRS (GSI)
- SPEG (GANIL)
- Momentum from time of flight (RIKEN)

Advancing Knowledge. Transforming Lives.

The heaviest nuclei

In transactinide nuclei (Z≥104), the liquid-drop contribution to the binding decreases and only stabilizing shell effects remain

Relativistic effects impact the electron structure and the chemistry of the heaviest elements

The heaviest elements found in nature: U (Z=92) and ²⁴⁴Pu (Z=94)

Nature, 234 Nov. 19 1971

Detection of Plutonium-244 in Nature

D. C. HOFFMAN & F. O. LAWRENCE

Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico

J. L. MEWHERTER & F. M. ROURKE

General Electric Company, Knolls Atomic Power Laboratory, Schenectady, New York

The periodic table

Advancing Knowledge. Transforming Lives.

The limit of charge

Advancing Knowledge. Transforming Lives.

Creation of new elements in an environment with high neutron flux

Advancing Knowledge. Transforming Lives.

- Neutron capture (up to Z=100)
 - ➤ in reactors
 - ≻in bombs
 - ➤ in stars?

Adapted from R.-D. Herzberg

The discovery of Fermium and Einsteinium

Advancing Knowledge. Transforming Lives.

Fermium and **Einsteinium** was discovered in the debris from the thermonuclear explosion of the hydrogen bomb "Mike" in the Pacific Ocean – detonated 3,000 miles west of Hawaii on the 1st of November 1952 (Operation "Ivy").

Hundreds of kilograms of explosion matter were collected and investigated. Hundreds of atoms of the **elements 99** (Einsteinium) and **element 100 (Fermium)** could be chemically separated.

It is estimated that some of the **uranium-238** nuclei captured 17 neutrons creating 255 U which, after a chain of beta-decay reactions, created Es (Z=99) and Fm (100).

Hydrogen bomb "Mike"

http://pubs.acs.org/cen/80th/einsteiniumfermium.html

Formation of heavy elements

Adapted from R.-D. Herzberg

Production of the heaviest elements

Advancing Knowledge. Transforming Lives.

"Cold fusion": E_{CN} =10 MeV ⁵⁰⁻⁷⁰X+Pb, Bi ⁷⁰Zn + ²⁰⁸Pb (n-poor isotopes) 1n evaporation channel σ(113)=0.05pb → 1 atom/month Long lifetimes: µs-ms GSI (Germany), RIKEN (Japan)

Heavy projectile on Pb/Bi targets

Pb+Cr -> Sg Pb+Fe -> Hs Pb+Zn -> 112

Light projectile on radioactive target

U+Mg->Rf (104) Ca+Cf->118 "Hot fusion": E_{CN} =45 MeV ²⁰⁻⁴⁸X+Actinide targets ⁴⁸Ca + U ... Cm (n-rich isotopes) 4-5n evaporation channel σ(114)=5pb → 2 atoms/day Long lifetimes: ms-d FLNR Laboratory in Dubna

Confirmed measurements also at RIKEN (Japan) in 2004 and the latest new element officially recognized by the International Union of Pure and Applied Chemistry (IUPAC)

Adapted from Ch. Theisen (2008)

Example

Advancing Knowledge. Transforming Lives.

⁴⁸Ca + ²³⁸U
$$\rightarrow$$
 Z=112 , $\sigma \approx$ 1pb

 \rightarrow Reaction rate ~ 1/month

Example : ²⁰⁸Pb(⁴⁸Ca,2n)²⁵⁴No

- Beam intensity 100 pnA = 10⁻⁷/1.6 10⁻¹⁹ s⁻¹ = 0.625 10¹² s⁻¹
- Target Thickness
 300 μg/cm² = 300 10⁻⁶ × N_A/208 cm⁻² = 8.68 10¹⁷ cm⁻²
- Cross section
 σ = 2μb = 2 10⁻⁶×10⁻²⁴ cm² = 2 10⁻³⁰ cm²
- \rightarrow Reaction rate ~ 1/s

Adapted from Ch. Theisen

Level schemes: Example

Advancing Knowledge. Transforming Lives.

F.P. Hessberger et al., EPJA 26 (2005) 233

Spectroscopic information

Advancing Knowledge. Transforming Lives.

R.-D. Herzberg and P. T. Greenlees, Prog. Part. Nucl. Phys. 61 (2008) 674

Shell Positions for ²⁹⁸114

Advancing Knowledge. Transforming Lives.

From M. Bender et al., PRC 60 (1999) 034304

Possibilities

Advancing Knowledge. Transforming Lives.

Changes in the electron configurations: Relativistic effects at high Z

Advancing Knowledge. Transforming Lives.

Bohr radius:
$$a_0 = \frac{h}{m_e c \alpha}$$

 $m_{rel} = \frac{m_e}{\sqrt{1 - (v_e/c)^2}}$

Electron velocity: $v_e/c=Z\alpha=Z/137$ (s electrons)

For the s electrons in Sg (106): $v_e/c=0.77$

4-

 $m_{rel} \sim 1.57 m_0$ increases

 $r=0.64r_0$ decreases

Take away

Advancing Knowledge. Transforming Lives.

- Life-times of excited states
 - Different experimental approaches
- Population of excited states in decays (selectivity)
- Neutron halo structures emerge in the regime of weak neutron binding
- The heaviest elements (hard to produce, rates can be as low as atom/month)
 - Last confirmed new element: Z=112
 - Production: "cold" vs. "hot" fusion
 - Detailed spectroscopy possible in quite a few cases
 - Electron structure and thus chemistry might be altered for the heaviest nuclei (relativistic effects on electron mass and radius)

Further reading

Advancing Knowledge. Transforming Lives.

Radii and halos

- Neutron halo nuclei, I. Tanihata, J. Phys. G: Nucl. Part. Phys. 22, 157 (1996)
- Nuclear halos, P.G. Hansen, A.S. Jensen, and B. Jonson, Annu. Rev. Part. Sci. 45, 591 (1995)
- Nuclear halo states, K. Riisager, Rev. Mod. Phys. 66, 1105 (1994).

Heavy elements

R.-D. Herzberg Spectroscopy of Superheavy Nuclei, Topical Review, JPG 30 (2004), R123.

Y.Oganessian Heaviest nuclei from ⁴⁸Ca-induced reactions Topical Review, JPG 34 (2007) R165.

S. Hofmann and G. Muenzenberg The discovery of the heaviest elements, Rev. Mod. Phys. 72 (2000) 733.

Collectivity and simple patterns

Rick Casten, Nuclear structure from a simple perspective, 2nd edition, Oxford science publications (2000)

http://nobelprize.org/nobel_prizes/physics/laureates/1975/mottelson-lecture.pdf