

Nuclear Structure III experiment

Advancing Knowledge. Transforming Lives.

Sunday

Monday

Thursday

Low-lying excited states

Collectivity and the single-particle degrees of freedom

Collectivity studied in Coulomb excitation

Direct reactions to study single-particle states

Shell Structure and Magic Numbers

Advancing Knowledge. Transforming Lives.

• Single-particle levels in nuclei

The single-particle levels of this fermionic system are grouped. Large, stabilizing gaps between groups of single-particle states occur at certain occupation numbers of the orbits with a "magic number" of protons and neutrons

Magic numbers

Numbers of neutrons and protons in nuclei which correspond to particularly stable structures (2, 8, 20, 28, 50, 82, 126)

- $\ell = 0, 1, 2, 3, ...$ s, p, d, f, ...
- Experimental signatures of nuclear shells
 - low capture cross sections
 - little collectivity
 - more tightly bound than neighboring nuclei

Maria Goeppert-Mayer, Phys. Rev. **75**, 1969 (1949) O. Haxel, Phys. Rev. **75**, 1766 (1949)

Shell structure – magic numbers

Advancing Knowledge. Transforming Lives.

Nuclear Shell Structure

- Mean field near stability
- Strong spin-orbit term
- Mean field for N >> Z?
- Reduced spin-orbit
- Diffuse density
- Tensor force

Excited states

Advancing Knowledge. Transforming Lives.

Collective excitation:

all nucleons outside a closed shell contribute coherently to the excitation (vibration, rotation)

K. S. Krane, Introductory Nuclear Physics, John Wiley & Sons (1988)

Fig. 3.19

Single-particle

excitation: Excited states are formed by rearranging one or a few nucleons in their orbits

• In nuclei, the energy scales are close:

 $E_{rot} \sim E_{vib} \sim E_{sp}$ (MeV)

Collective and single-particle excitation can be separated but interact strongly

Population of excited states - Reactions MICHICAN STATE

Population of excited states - Decays

Advancing Knowledge. Transforming Lives.

Experimental considerations: *Reactions*

Nuclear reactions – cross section

- The choice of the target depends on the reaction hat is desired
 - $N_R = \sigma \times N_T \times N_B$ σ Cross section
 - \succ N_T Atoms in target
 - ➢ N_B Beam rate
 - \succ N_R Reaction rate

- Reactions
 - Inelastic scattering
 - Nucleon transfer
 - Fusion, fusionevaporation
 - Breakup/fragmentation
- Experimental task
 - Identify and count incoming beam
 - Identify and count reacted beam
 - Tag the final state of the reaction residue
 - Measure scattering angles and momentum distributions

Nuclear reactions – experimental considerations I

- Fast beams and thick targets
 - Increased luminosity
 - Use γ-ray spectroscopy to identify final states in thicktarget experiments
 - Event-by-event identification
 - Mainly single-step reactions since the interaction time between target and projectile is small

- Typical reactions
 - Relativistic Coulomb excitation (single-step)

Advancing Knowledge. Transforming Lives.

- One- and two-nucleon knockout reaction
- Coulomb breakup
- Charge-exchange reactions

Example
 σ = 100 mbarn
 N_T = 1.5 x 10²¹ (500mg/cm² Au
 target)
 N_B = 6.5 x10³ Hz
 N_R =1 Hz

Nuclear reactions – experimental considerations II

- Typical reactions
 - Fusion and fusion-evaporation reactions

Advancing Knowledge. Transforming Lives.

- Nucleon transfer reactions
- Multiple Coulomb excitation
- Deep-inelastic scattering

- Beam energies around the Coulomb barrier
 - Thin targets required
 - Multi-step reactions are possible
 - High angular-momentum transfer typical

• Example $\sigma = 100 \text{ mbarn}$ $\gg N_T = 1 \times 10^{19} \text{ (3mg/cm}^2 \text{ Au target)}$ $\gg N_B = 1 \times 10^6 \text{ Hz}$ $\gg N_R = 1 \text{ Hz}$

Gamma-rays to tag the final state

Advancing Knowledge. Transforming Lives.

Germanium detectors: Superior energy resolution, but low efficiency

Scintillator-based: High-efficiency, moderate resolution

 $E_0 \gamma$ -ray energy in the source frame Example: SeGA geometry (NSCL)

- \boldsymbol{E} γ-ray energy in the lab frame

- β₀
- velocity of the source
- θ_{0} γ -ray angle of emission

Gamma-rays to tag the final state

Two-proton knockout to ³⁶Mg. Only the first excited state was observed.

CHIGAN STA

Low-energy fusionevaporation reaction to produce ²⁵³No. Many excited states are populated.

Advancing Knowledge. Transforming Lives.

Collective excitations

Adapted from Rick Casten

Even-even nuclei: 2⁺₁ excitation strength as an indicator of shell structure

Examples of changes in shell structure

Advancing Knowledge. Transforming Lives.

D.-C. Dinca et al., PRC 71, 041302 (2005)

Exchange of virtual photons mediates excitation

Beam energies at the Coulomb barrier (SPIRAL): E_x , $B(\sigma\lambda)$ excitation strength, band structures $(0^+ \rightarrow 2^+ \rightarrow 4^+ \rightarrow 6^+)$

Beam energies well below the Coulomb barrier (ISOLDE, HRIBF): Usually only the first 2⁺ state accessible

D. Cline, Annu. Rev. Part. Sci. 36, 683 (1986)

$$V_C(MeV) = \frac{1.44 \times Z_1 \times Z_2}{r(fm)}$$

Measure de-excitation γ -rays

$$r(fm) \sim 1.2(A_1^{1/3} + A_2^{1/3})$$

Exchange of virtual photons mediates excitation

Measure de-excitation γ -rays

Intermediate and relativistic energies (NSCL, RIKEN, GANIL, GSI): $E(2^+_1)$, $B(E2,0^+ \rightarrow 2^+_1)$ excitation strength, two-step to 4⁺ heavily suppressed (short interaction time at high beam energies)

T. Glasmacher, Annu. Rev. Part. Sci. 48, 1 (1998)

BUT: the collision between target and projectile happens above the Coulomb barrier for every target-projectile combination

How can this still be Coulomb excitation?

How can it be Coulomb excitation at energies above the Coulomb barrier ?!

Advancing Knowledge. Transforming Lives.

At NSCL, RIKEN, GSI ... the collision between target and projectile happens above the Coulomb barrier for every target-projectile combination

But: electromagnetic interaction dominates for $b > R_{int}$

T. Glasmacher, Annu. Rev. Part. Sci. 48, 1 (1998)

impact parameter $b=b(\theta)$

$$b_{\min} = \frac{a}{\gamma} \cot(\theta_{\max}^{cm}/2)$$
$$a = \frac{Z_p Z_t e^2}{\mu v^2}$$

Experiment:

Maximum scattering angle determines minimum b. Restrict analysis to events at the most forward scattering angles so that $b(\theta) > R_{int}$

Intermediate-energy Coulomb excitation Example: ⁴⁶Ar + ¹⁹⁷Au

A. Winther and K. Alder, NPA 319, 518 (1979)

Target excitation

Advancing Knowledge. Transforming Lives.

⁴⁰S+¹⁹⁷Au

H. Scheit et al., PRL 77, 3967 (1996)

Low-energy Coulomb excitation Example: ³⁰Mg + ^{58,60}Ni

Counts / 4 keV

Advancing Knowledge. Transforming Lives.

 ³⁰Mg at 2.25 MeV/nucleon on natural Ni target (1.0 mg/cm²)
 From REX-ISOLDE at CERN
 γ-ray detection with MINIBALL.
 Particle detection with CD-shaped double-sided Si strip detector

Applications Approaching N=Z=50 and N=50 in Ge isotopes

Advancing Knowledge. Transforming Lives.

A. Ekstrom et al., PRL 101, 012502 (2008)

⁷⁸⁻⁸²Ge Coulomb excitation below the barrier at HRIBF

E. Padilla-Rodal et al., PRL 94, 122501 (2005)

J. R. Terry et al., Phys. Lett. B 640, 86 (2006)

²⁷Ne

Advancing Knowledge. Transforming Lives.

Single-particle states

Excited states in nuclei with one nucleon outside a magic number

MICHIGAN STATE

Advancing Knowledge.

One-nucleon knockout A direct reaction

Advancing Knowledge. Transforming Lives.

more than 50 MeV/nucleon:

Straight-line trajectories

ℓ=2 // ℓ=0 ______P_||

P.G. Hansen and B.M. Sherrill, NPA 693 ,133 (2001). P.G. Hansen and J. A. Tostevin, Annu. Rev. of Nucl. and Part. Sci. 53, 219 (2003).

Spectroscopy in one-nucleon knockout *Example:* ⁹Be(³⁴Ar,³³Ar)X

Advancing Knowledge. Transforming Lives.

A. Gade et al., PRC 69 034311 (2004).

Low-energy transfer reactions

Low-energy transfer reactions

Low-energy inverse-kinematics transfer experiment

- ²H(⁸Li,p)⁹Li at ANL
- Proton angular distribution measured
- Quantitative spectroscopic information obtained

HI-induced low-energy transfer at HRIBF A really smart trigger

Advancing Knowledge. Transforming Lives.

Lifetimes of excited states

Lifetimes of excited states

Advancing Knowledge. Transforming Lives.

Lifetimes of excited 2⁺ states in even-even nuclei: picosecond range

$$\tau_{\gamma} = 40.81 \times 10^{13} E^{-5} [B(E2)\uparrow/e^2b^2]^{-1}$$

Some excited states live much longer: Isomers

Table I: Examples of extreme isomers

Nuclide	Half-life	Spin (ħ	n) Energy	Attribute	
12 Be	~500 ns	0	2.2 MeV	low mass	
Ag	300 ms	21	6 MeV	proton decay	
152 Er	11 ns	~36	13 MeV	high spin and energy	From P.M. Walker and J. J.
¹⁸⁰ Ta	$>10^{16}$ y	9	75 keV	long half-life	Carroll, Nuclear Physics News
²²⁹ Th	~5 h	3/2	~7.6 eV	low energy	17, 11-15 (2007)
²⁷⁰ Ds	~6 ms	~10	~1 MeV	high mass	

Plunger lifetime measurements

Advancing Knowledge. Transforming Lives.

Adapted from K. Starosta

Long-lived excited states – isomers Back to storage rings and penning traps

Advancing Knowledge. Transforming Lives.

HIGAN STA

Advancing Knowledge. Transforming Lives.

Excited states populated in decays

Excited states populated in β decay Selectivity through selection rules

Advancing Knowledge. Transforming Lives.

Total number of ⁵⁴Ca implants: 654 only

Selection rules in β decay, any textbook

Туре	ΔJ	$\Delta \pi$
Allowed	0,1	no
First Forbidden	$0,\!1,\!2$	yes
Second Forbidden	$1,\!2,\!3$	no
Third Forbidden	$2,\!3,\!4$	yes
Fifth Forbidden	$3,\!4,\!5$	no

P. F. Mantica et al., PRC 77, 014313 (2008)

γ -ray spectroscopy tagged with β -delayed protons

Advancing Knowledge. Transforming Lives.

Single-neutron states above doubly magic ¹⁰⁰Sn:

D. Seweryniak et al., PRL 101, 022504 (2007)

Excited states populated following α and proton emission

Ground state and first excited state (201 keV) of ¹⁴⁰Dy populated in proton decay of ¹⁴¹Ho

M. Karny et al., PLB 664, 52 (2008)

MICHIGAN STAT

Take away

- Excited states provide valuable information on the evolution of nuclear structure
 - Gamma-ray spectroscopy to tag the excited state
 - Observables related to the collective degree of freedom
 - Single-particle structure from direct reactions
- Life-times of excited states
 - Different experimental approaches
- Population of excited states in decays (selectivity)

Related review articles

Advancing Knowledge. Transforming Lives.

Coulomb excitation (low energy and intermediate energy)

- Nuclear shapes studied by Coulomb excitation, D. Cline, Annu. Rev. Part. Sci. 36, 683 (1986)
- Coulomb excitation at intermediate energies, T. Glasmacher, Annu. Rev. Part. Sci. 48, 1 (1998)

Direct reactions with exotic beams

• Direct reactions with exotic nuclei, P.G. Hansen and J.A. Tostevin, Annu. Rev. Part. Sci. 53, 219 (2003)

In-beam gamma-ray spectroscopy with fast beams

 In-beam nuclear spectroscopy of bound states with fast exotic ion beams, A. Gade and T. Glasmacher, Prog. In Part. and Nucl. Phys. 60, 161 (2008)