Novel germanium detectors for the MAJORANA experiment

Michael G. Marino

Center for Experimental Nuclear Physics and Astrophysics (CENPA) University of (the other) Washington

June 20, 2008

Searching for $0\nu\beta\beta$

Methodology/Backgrounds Detectors for the MAJORANA Experiment P-type Point-Contact (P-PC) Detectors

Status and Outlook

Outline

Searching for $0\nu\beta\beta$

Methodology/Backgrounds Detectors for the MAJORANA Experiment P-type Point-Contact (P-PC) Detectors

Status and Outlook

Methodology/Backgrounds

Searching for $0\nu\beta\beta$ in 4 easy steps

- Identify a candidate isotope: (e.g. ⁴⁸Ca, ⁷⁶Ge, ¹³⁰Te, ¹³⁶Xe). Obtain lots of it.
- Make a detector (Source = Detector, or Source + Detector)
- Identify and reduce backgrounds (low-background materials, go underground, analysis cuts, etc.)
- Wait

Methodology/Backgrounds

Searching for $0\nu\beta\beta$ in 4 easy steps

- Identify a candidate isotope: (e.g. ⁴⁸Ca, ⁷⁶Ge, ¹³⁰Te, ¹³⁶Xe). Obtain lots of it.
- Make a detector (Source = Detector, or Source + Detector)
- Identify and reduce backgrounds (low-background materials, go underground, analysis cuts, etc.)
- Wait

Outline	Searching for 0 <i>νββ</i> ⊙●○ ○ ○○○○○○	Status and Outlook
Methodology/Backgrounds		
⁷⁶ Ge		

Advantages of germanium

- Source = Detector
- High resolution (e.g. ~0.16% at 2039 keV)
- Background rejection (e.g. Pulse-shape analysis, segmentation)
- High-purity: reduce intrinsic contaminations
- Enriching ⁷⁶Ge content: established technique
- Easily arrayed
- Q-value: 2039 keV

Outline	Searching for 0 <i>νββ</i> ο●ο ο οοοοοο	Status and Outlook
Methodology/Backgrounds		
⁷⁶ Ge		

Advantages of germanium

- Source = Detector
- ▶ High resolution (e.g. ~0.16% at 2039 keV)
- Background rejection (e.g. Pulse-shape analysis, segmentation)
- ► High-purity: reduce intrinsic contaminations
- Enriching ⁷⁶Ge content: established technique
- Easily arrayed
- Q-value: 2039 keV

Methodology/Backgrounds

Backgrounds of the MAJORANA experiment

Background Source	Rates for Important Isotopes			Total Est. Background	
		cnts/ROI/t-y			cnts/ROI/t-y
		⁶⁸ Ge	⁶⁰ Co		
Germanium	Gross:	13.49	1.35		
	Net:	0.09	0.05		0.14
		²⁰⁸ TI	²¹⁴ Bi	⁶⁰ Co	
All Materials	Gross:	1.31	1.12	2.17	
	Net:	0.6	0.37	0.04	1.01
Surface Alphas	Alphas originating from all surfaces			0.56	
External Sources					0.35
$2\nu\beta\beta$					< 0.01
			TOTAL SUM		2.07

Detectors for the MAJORANA Experiment

Solid State Detectors: A crash course

A few basic ideas:

- Apply a reverse bias to a semiconductor diode:
 - Sweep out free charge
 - Create a 'depletion' region
- Depletion region = active detector volume
- Deposit energy into depletion region:
 - Free electron-hole pairs (N~E_{dep})
 - Charge carriers swept to their respective electrodes

Solid State Detectors: A crash course

e.g. Single-site event

Solid State Detectors: A crash course

e.g. Multi-site event

P-type Point Contact (P-PC) Introduction

Low capacitance and therefore low noise (Low energy threshold ${\sim}100~\text{eV})$

Luke, et al., IEEE Transactions on Nuclear Science, 36 (1989), 926

P-PC Introduction: Charge collection times

Barbeau, et al. JCAP09 (2007) 009

P-PC Introduction: Charge collection times

Barbeau, et al. JCAP09 (2007) 009

Background reduction: Low Energy Threshold ^{68}Ge (cosmogenic, \sim 1 - 10 atoms/kg/day at the earth's surface, enriched ^{76}Ge)

Goal: Tag ⁶⁸Ge when it initially decays, veto for a few ⁶⁸Ga half-lives.

⁶⁸ Ge decays	Percent	Energy (keV)
K-capture	86.4%	10.3
L-capture	11.5%	1.3
M-capture	2.0%	~0.1

Background reduction: Low Energy Threshold

Background reduction: Multi-site rejection

- Dominant energy loss by γs in Ge at ~MeVs: Compton scattering, multi-site events
- Time expansion of pulse by P-PC improves multi-site tagging

 $6 \text{ cm} \times 6 \text{ cm}$ coax Ge detector, simulated photons on face of detector IEEE Trans. Nucl. Sci. **31** (1984) 367

NNPSS 2008

line	Searching for $0\nu\beta\beta$	Status and Outlook
	000	

Out

Background reduction: Multi-site rejection

- Dominant energy loss by γs in Ge at ~MeVs: Compton scattering, multi-site events
- Time expansion of pulse by P-PC improves multi-site tagging

Outline	Searching for $0\nu\beta\beta$ 000 000000	Status and Outlook

MAJORANA experiment's sensitivity to Dark Matter?

Outline

Searching for $0\nu\beta\beta$

Methodology/Backgrounds Detectors for the MAJORANA Experiment P-type Point-Contact (P-PC) Detectors

Status and Outlook

Status for the P-PC

- P-PC detectors have characteristics (low threshold, longer charge collection) to improve a search for 0νββ
- 4 detectors currently available or under construction within the collaboration
- MAJORANA plans to deploy an array of unenriched P-PC detectors for R&D beginning the end of this year

