Lecture 3: Hadron Structure

- Hadron Structure Recipe
- Form Factors, DIS and GPDs
- New Insights orbital angular momentum
- Future

Pion Form Factor

Anatomy of a Matrix Element Calculation

Pion Inte Operato

(0 |

Anatomy of a Matrix Element Calculation

Both 3pt and 2pt built from Quark Propagators through Wick Expansion

$$G^{ij}_{\alpha\beta}(x,y) = \langle 0|\psi^i_{\alpha}(x)\bar{\psi}^j_{\beta}(y)|0\rangle$$

Pion Form Factor

LHPC, Bonnet *et al,* Phys.Rev. D72 (2005) 054506

Proton EM Form-Factors - I

EM Form Factors describe the distribution of *charge* and *current* in the proton: 2 form factors

Proton EM Form Factors - II

Jefferson Lab

- Lattice QCD computes the *isovector* form factor
- Hence obtain Dirac charge radius $\langle r^2 \rangle^{u-d}_{ch}$ assuming dipole form

LHPC, hep-lat/0610007

$$\langle \mathbf{r}^2
angle_{\mathrm{ch}}^{\mathbf{u}-\mathbf{d}} = \mathbf{a_0} - 2 \frac{\left(1 + 5\mathbf{g}_{\mathrm{A}}^2\right)}{(4\pi \mathbf{f}_{\pi})^2} \frac{1}{2} \log\left(\frac{\mathbf{m}_{\pi}^2}{\mathbf{m}_{\pi}^2 + \mathbf{\Lambda}^2}\right)$$

Leinweber, Thomas, Young, PRL86, 5011

Form Factor – III

Disconnected Contributions

Different Regimes in Different Experiments

n

Form Factors transverse quark distribution in Coordinate space

Structure Functions longitudinal quark distribution in momentum space

GPDs

х

Fully-correlated quark distribution in both coordinate and momentum space

Moments of Structure Functions and GPD's

- Describe distribution of longitudinal momentum and spin in proton
- Matrix elements of light-cone correlation functions

$$\mathcal{O}(x) = \int \frac{d\lambda}{4\pi} e^{i\lambda x} \bar{\psi}\left(-\frac{\lambda}{2}n\right) n P e^{-ig \int_{\lambda/2}^{\lambda/2} d\alpha \, n \cdot A(\alpha n)} \psi\left(\frac{\lambda}{2}n\right)$$

- Expand O(x) around light-cone $O_q^{\{\mu_1\mu_2\dots\mu_n\}} = \overline{\psi}_q \gamma_5 \gamma^{\{\mu_1} i D^{\mu_2}\dots D^{\mu_n\}} \psi_q \begin{pmatrix} -\zeta_q \\ -\zeta_q \\ -\zeta_q \end{pmatrix}$
- Diagonal matrix element $\langle P|O_q^{\{\mu_1...\mu_n\}}|P
 angle\simeq\int dx\,x^{n-1}q(x)$

Moments of Parton Distributions

Distributions at 5 GeV

Iso-vector Momentum Fraction

Isovector momentum fraction

$$\langle x \rangle_{u-d} = \langle x \rangle_{u-d}^0 \left(1 - \frac{(3g_A + 1)}{4\pi f_\pi^2} m_\pi^2 \ln m_\pi^2 \right) + \dots$$

- Dominates behavior at low mass
- g_A , f_{π} well-determined on lattice

Shape...

- Calculations give moments of distributions
- Higher moments harder hypercubic symmetry...
- Can we recover shape from knowledge of, say, first three moments?

Different Regimes in Different Experiments

n

Form Factors transverse quark distribution in Coordinate space

Structure Functions longitudinal quark distribution in momentum space

GPDs

х

Fully-correlated quark distribution in both coordinate and momentum space

Generalized Parton Distributions (GPDs)

Measured in, e.g., Deeply Virtual Compton Scattering

Moments of Structure Functions and GPD's

• Matrix elements of light-cone correlation functions

$$\mathcal{O}(x) = \int \frac{d\lambda}{4\pi} e^{i\lambda x} \bar{\psi}\left(-\frac{\lambda}{2}n\right) n P e^{-ig \int_{\lambda/2}^{\lambda/2} d\alpha \, n \cdot A(\alpha n)} \psi\left(\frac{\lambda}{2}n\right)$$

• Expand O(x) around light-cone

 $O_q^{\{\mu_1\mu_2...\mu_n\}} = \bar{\psi}_q \gamma^{\{\mu_1} i D^{\mu_2} \dots D^{\mu_n\}} \psi_q$

Off-diagonal matrix element

 $\langle P'|O_q^{\{\mu_1\dots\mu_n\}}|P\rangle \simeq \int dx \, x^{n-1}[H(x,\xi,t),E(x,\xi,t)] \\ \longrightarrow A_{ni}(t),B_{ni}(t),C_n(t),\tilde{A}_{ni}(t),\tilde{B}_{ni}(t),\tilde{C}_n(t)$

Origin of Nucleon Spin - I

How does the spin of the nucleon arise from quark spin, quark orbital angular momentum, and gluons?

Origin of Nucleon Spin - II

Lattice QCD + expt. Discovering origin of nucleon spin

LHPC, Haegler et al., Phys. Rev. D 77, 094502 (2008)

🎯 📢

Transverse Distribution - I

• Lattice QCD can compute moments of GPDs and PDFs, and the *t*-dependence

Jefferson Lab

$$A_{n0}^{q}(-\vec{\Delta}_{\perp}^{2}) = \int d^{2}b_{\perp} \ e^{i\vec{\Delta}_{\perp}\cdot\vec{b}_{\perp}} \int_{-1}^{1} dx \ x^{n-1} q(x,\vec{b}_{\perp})$$

Compare to phenomenological – models

Decrease slope : decreasing transverse size as $x \rightarrow l$ Burkardt

Photo-transitions

Transition FF: γ N - Δ

Alexandrou et al. (2005)

Statistics for Hadron Structure

• Signal to noise degrades as pion mass decreases

$$\frac{\text{Signal}}{\text{Noise}} = \frac{\langle J(t)J(0)\rangle}{\frac{1}{\sqrt{N}}\sqrt{\langle |J(t)J(0)|^2\rangle - \langle J(t)J(0)\rangle^2}}$$
$$\sim \frac{Ae^{-M_n t}}{\frac{1}{\sqrt{N}}\sqrt{Be^{-3m_\pi t} - Ce^{-2M_n t}}}$$
$$\sim \sqrt{N}De^{-(M_n - \frac{3}{2}m_\pi)t}$$

• Due to different overlap of nucleon and 3 pions also have volume dependence: \sqrt{V}

300 MeV pions

550 MeV pions

Required Measurements

- Measurements required for 3% accuracy at T=10
- May need significantly more

Proceeding to Physical Masses

Cost _{traj} =	$\left(\frac{\mathrm{fm}}{a}\right)^{6}$	$\left(\frac{L_s}{fm}\right)^3$	$\left(\frac{L_t}{fm}\right)$	$\cdot [C_1 + C_2/m_l] .$
------------------------	--	---------------------------------	-------------------------------	---------------------------

a (fm)	m_ℓ/m_s	Size	$m_{\pi}(\text{GeV})$	L (fm)	Lm_{π}	MC traj.	TF-Yrs
0.086	0.150	$48^3 imes 64 imes 16$	276	4.1	5.8	6000	7
0.086	0.093	$48^3 imes 64 imes 16$	217	4.1	4.5	2400	3
0.086	TOTAL						10
0.125	0.134	$32^3 \times 64 \times 24$	250	4.0	5.1	4000	2
0.125	0.102	$32^3 imes 64 imes 24$	218	4.0	4.4	4000	2
0.125	0.102	$48^3 \times 64 \times 24$	218	6.0	6.6	4500	9
0.125	0.071	$48^3 imes 96 imes 24$	181	6.0	5.5	4500	18
0.125	0.039	$48^3 imes 96 imes 24$	135	6.0	4.1	6000	34
0.125	TOTAL						65
0.094	0.102	$64^3 imes 96 imes 24$	218	6.0	6.6	6700	65
0.094	0.071	$64^3 imes 96 imes 24$	181	6.0	5.5	7000	78
0.094	0.039	$64^3 \times 96 \times 24$	135	6.0	4.1	7600	115
0.094	TOTAL						258

Possible ensemble of DWF gauge configurations for joint HEP/Hadron Structure investigations

Computing Resources

Leadership-class (ORNL, ANL) – petaflop at ORNL

QCDOC

www.usqcd.org

Chroma, MILC,QDP

QCD at Finite Temperature and Density

Phase Diagram of QCD

O. Philipsen, arXiv:0708.1293

