Lecture 2: Spectroscopy and Lattice QCD

•A spectrum recipe book

• Resonances

•pure-gauge glueball spectrum

•Spectrum of mesons and baryons

•Unstable Particles and Hadronic interactions

Effective Masses

• Effective mass provides visual tool for seeing domination by single state

 $M_{\text{eff}} = \ln C(t)/C(t+1)$

Light-hadron Spectrum

Setting Quark Masses

• Non-perturbative determination of parameters of three-flavor anisotropic-clover action completed.

Spectroscopy

- Classic tool for gleaning information about degrees of freedom of QCD
- Experimental and *ab initio* N* and Exotic programs aim at discovering effective degrees of freedom of QCD, and resolving competing low-energy models:

Delta

One baryon resonance studied for many years.....

Thomas Jefferson National Accelerator Facility, Young (...)

Variational Method: Glueballs

Lattice "PWA"

• Do not have full rotational symmetry: J, $J_z \rightarrow \Lambda$, λ

- Has 48 elements
- Contains irreducible representations of O, together with 3 spinor irreps G₁, G₂, H: R.C.Johnson, PLB114, 147 (82)

Spatial Structures

Illustration	Name	Explicit form $(i \neq j \neq k)$
۹	single-site	$\phi^F_{ABC} \ arepsilon_{abc} \ ilde{\psi}_{Aalpha} \ ilde{\psi}_{Bbeta} \ ilde{\psi}_{Cc\gamma}$
•	singly-displaced	$\phi^F_{ABC} \; \varepsilon_{abc} \; \tilde{\psi}_{Aalpha} \; \tilde{\psi}_{Bbeta} \; \left(\tilde{D}^{(p)}_j \tilde{\psi} ight)_{Cc\gamma}$
•••	doubly-displaced-I	$\phi^{F}_{ABC} \varepsilon_{abc} \tilde{\psi}_{Aa\alpha} \left(\tilde{D}^{(p)}_{-j} \tilde{\psi} \right)_{Bb\beta} \left(\tilde{D}^{(p)}_{j} \tilde{\psi} \right)_{Cc\gamma}$
	doubly-displaced-L	$\phi^{F}_{ABC} \varepsilon_{abc} \tilde{\psi}_{Aa\alpha} \left(\tilde{D}_{j}^{(p)} \tilde{\psi} \right)_{Bb\beta} \left(\tilde{D}_{k}^{(p)} \tilde{\psi} \right)_{Cc\gamma}$
	triply-displaced-T	$\phi^{F}_{ABC} \varepsilon_{abc} \left(\tilde{D}^{(p)}_{-j} \tilde{\psi} \right)_{Aa\alpha} \left(\tilde{D}^{(p)}_{j} \tilde{\psi} \right)_{Bb\beta} \left(\tilde{D}^{(p)}_{k} \tilde{\psi} \right)_{Cc\gamma}$
	triply-displaced-O	$\phi^{F}_{ABC} \varepsilon_{abc} \left(\tilde{D}_{i}^{(p)} \tilde{\psi} \right)_{Aa\alpha} \left(\tilde{D}_{j}^{(p)} \tilde{\psi} \right)_{Bb\beta} \left(\tilde{D}_{k}^{(p)} \tilde{\psi} \right)_{Cc\gamma}$

Quenched Baryon Spectrum

2-flavour calculation in progress: Eric Engelson

Roper Resonance

Roper Bayesian statistics and 2 S₁₁(1535) constrained curve fitting Masses (GeV) 1.5 Used simple three-quark Nucleon operator 1 Dong et al., PLB605, 137 (2005) 0.5 M_p/M_N 0.1 0.2 0 0 0.3 0.4 0.5 0.6 0.7 0.8 01 0.2 0 m_{π}^{2} (GeV²) M_R [GeV] Borasoy et al., Phys.Lett. B641 0.5L 0.2 0.1 (2006) 294-300 m_{π}^2 [GeV²]

Meson Spectroscopy

Meson Spectroscopy: Charmonium

Dudek, Edwards, Mathur, DGR, PRD77, 034501 (2008)

Unstable Resonances

Unstable Particles

- Maiani-Test Theorem
- computations done in a periodic box
 - momenta quantized

- discrete energy spectrum of stationary states → single hadron, 2 hadron,...
- scattering phase shifts → resonance masses, widths (in principle) deduced from finite-box spectrum
 - B. DeWitt, PR 103, 1565 (1956) (sphere)
 - M. Luscher, NPB**364**, 237 (1991) (cube)
- Two-particle states and resonances identified by examining behaviour of energies in finite volume
 - Resonances with milder volume dependence

I=2 π-π Scattering Length

See NPLQCD Review, arXiv:0805.4629

Hadronic Interactions

• NPLQCD: Amalgam of Lattice QCD + Effective Theory

Review Article - arXiv:0805.4629

Width of Rho

Gottlieb and Rummukainan

Phases shifts related to avoided level crossings.

L

Thomas Jefferson National Accelerator Facility

L

Width of p

NN Scattering

NPLQCD: S. Beane, P. Bedaque, K. Orginos, M. Savage ; PRL97, 012001 (2006))

Calculations at lower m_{π} to constrain scattering length at physical quark masses

 ${}^{1}S_{0}$: pp , pn , nn

${}^{3}S_{1}$ - ${}^{3}D_{1}$: pn : deuteron

YN Interaction

Spectroscopy – Outlook

- Anisotropic $N_f = 2$ Wilson and $N_f = 2 + 1$ Clover gauge configurations designed for spectroscopy: 2007 INCITE, 2008 INCITE, LQCD
- Investigate new methods of computing hadron correlation functions: all-to-all propagators and eigenvector methods – *multiparticle states*
- Physics goals
 - Low-lying baryon spectrum for states composed of u/d and s quarks, with scattering states delineated
 - Low-lying exotic meson spectrum; first calculation of photocouplings involving conventional and exotic mesons

$L_s(t)$	fm) 1.92fm	$2.4 \mathrm{fm}$	2.9fm	3.8fm
$m_{\pi}(MeV)$	$16^3 imes 128$	$20^3 \times 128$	$24^3 \times 128$	$32^3 imes 128$
875	10k, JLab[0.20M]	(8.4)		
580	20k, JLab[0.48M]	(5.6)		
400		20k, JLab[1.351	M](4.8)	
315		30k, JLab[2.351	[4.66] M](3.8) 30k, ORNL[4.66]	5M](4.5) 30k, X[13.7M](6.0)
250			30k, TACC[5.44	M](3.6) 30k, ?[16.0M](4.8)

Summary

- Low-lying light hadron spectrum is benchmark calculation of LQCD
- LQCD can also compute the masses of excitations of the theory, and in principle their widths
- Exciting program of computations that are tuned to the experimental program

BACKUP

HADRON SPECTRUM

- University of Pacific J Juge · JLAB **S** Cohen J Dudek **R** Edwards B Joo H-W Lin
 - D Richards
- · BNL
 - A Lichtl
- Yale
 - G Fleming

Jefferson Lab

· CMU

- J Bulava
- J Foley
- C Morningstar
- · UMD
 - E Engelson S Wallace
- Tata (India)
 N Mathur

Spectroscopy - Roadmap

•First stage: a ~ 0.12 fm, spatial extents to 4 fm, pion masses to 220 MeV

-Spectrum of exotic mesons

–First predictions of π_1 photocoupling

-Emergence of resonances above two-particle threshold

•Second stage: two lattices spacings, pion masses to 180 MeV

-Spectrum in continuum limit, with spins identified

-Transition form factors between low-lying states

•Culmination: Goto a=0.10fm computation at two volumes at physical pion mass

-Computation of spectrum for direct comparison with experiment

-Identification of effective degrees of freedom in spectrum

* Resources: USQCD clusters, ORNL/Cray XT4, ANL BG/P, NSF centers, NSF Petaflop machine (NCSA-2011)/proposal

