

Outline Shell Structure – Collective Structure: ●Experimental methods:

- Coulomb excitation
- Knockout reactions
- Magic Numbers in exotic nuclei
- New modes of collectivity?

Ingo Wiedenhöver, National Nuclear Physics Summer School 7/16/2007 Tallahassee, Florida

Magic Numbers

126

- The existence of magic numbers is the most important thing to know about atomic nuclei.
- Protons and neutrons act almost like independent systems.
- Is this true for really exotic nuclei?

20

Shell Structure of Neutron-Rich Nuclei

Very neutron-rich nuclei are expected to exhibit diffuse surfaces, which leads to a reduced spin-orbit coupling and "melting" of the shell structure.

Single Particle vs. Collective Pictures

- Nuclei with N, Z near closed shells can be successfully described as many-body systems
- Interactions of valence- protons and neutrons lead to collective correlations, so that
- Nuclei far away from closed shells are also described through a (deformed) mean field

Quadrupole - Deformation

- **electric Quadrupole moment leads to** electric Quadrupole (E2) transitions.
- Measure E2 transition probability= $> B(E2)$ = measure Quadrupole deformation

Deformed or spherical 2

● Even simpler : Grodzins Rule: Quadrupole transitions Quadrupole deformation = lower 2+ energy

$$
E(2_1^+)*B(E2)\uparrow=2.57 Z^2 A^{-2/3}
$$

- If we want to investigate shell structure of exotic nuclei, we need
	- **Exotic nuclei**
	- Methods to measure excited states
	- Methods to measure Quadrupole transition rates
	- Methods to measure "single-particle" character

NSCL Coupled Cyclotron Facility

-
- Can track beam momentum event-by-event

D.J. Morrissey et al, NIM B 204 (2003) 90

Segmented Germanium Array (SeGA) Highly-segmented HPGe detectors for fast beams

W. Mueller et al. Nucl. Instr. Meth. A 466 (2001) 492. Z. Hu et al. Nucl. Instr. Meth. A 482 (2002) 715. K.L. Miller et al., Nucl. Instr. Meth. A 490 (2002) 140.

Intermediate Energy Coulomb Excitation

Only e.m. excitations ?

Shape coexistence in the *N***=20 isotones**

 $f_{7/2}$: X. Campi et al. Nucl. Phys. A 251 (1975) 193

"Island of Inversion": E. Warburton, B.A. Brown, J. Becker, Phys. Rev. C 41 (1990) 1147

Coulomb Excitation: 32Mg, ³⁴Mg

J.A. Church et al.: PHYS.REV. C 72, 054320 (2005)

Investigation of magic numbers close to the drip-line

- **Modification of the** shell structure may be most easily detected around the neutron magic numbers.
- $N=20$ is broken in the "island of inversion" at ³²Mg
- $N=28$ is the lightest magic number generated by the spin-orbit coupling
- 1612 B. SAT $N=28$ is the heaviest magic $\frac{Na30}{50 \ m}$ Na31 $Na32$ $Na33$ **Na34** Na35 **Na37** number, for which the N=20drip-line can be reached in the $\mathbb{C}^{\mathbb{Z} \times \mathbb{C}}$ eseeable future
- Knockout reactions allow us to measure particle structure

The *N***=28 magic number below Ca**

44

28

Explanation for collectivity in ⁴⁴S: Proton Shell Structure

- As the $v(f_{7/2})$ fills from 0 to 8, the $E(\pi d_{3/2})$ is depressed due to vf_{7/2}- $\pi d_{3/2}$ interaction
- Explains difference between 36S and ⁴⁴S
- Explains 34Si
- Explains ³⁸Ar and ⁴⁶Ar $(\pi d_{3/2})^2$
- Predicts *Z*=14 shell closure for 42Si

R.K. Bansal, J.B. French, Phys. Lett. 11 (1964) 145 **. A 1988** 263 (1976) 210] F. Pellegrini, Phys. Rev. C 19 (1979) 2412 P.D. Cottle, K.W. Kemper, Phys. Rev. C 58 (1998) 3761

Single proton hole energies from Ca(*d*, ³He) [P. Doll et al, Nucl. Phys.

New magic nucleus 42Si

• I.W.¹, J. Fridmann¹, P. Cottle¹, A. Gade¹, P. Fallon³, P.G. Hansen¹, L.T.Baby¹, D. Bazin¹, B.A. Brown¹, C.M. Campbell¹, J.M. Cook², E. Diffenderfer¹, D.-C. Dinca², T. Glasmacher², K. Kemper¹, J.L. Lecouey², W.F. Mueller², H. Olliver², E. Rodriquez-Vieitez³, J.R. Terry², J. Tostevin², A. Volya¹, K. Yoneda².

¹ Florida State University ²NSCL, Michigan State University ³Lawrence Berkeley National Lab

- Two experiments at the Coupled Cyclotron Facility.
- Primary beam: ⁴⁸Ca, 140 MeV/u
- Secondary beams: ⁴⁴S, 98.7 MeV/u 300 s-1 ⁴⁶Ar (setup and test) delivered by A1900 fragment separator

Experiments

- $\bullet~$ Two and one proton-knockout on exotic beams. $^{46}Ar \rightarrow ^{44}S$
- Identify secondary reaction products in S800
- Measure coincident γ -rays in SeGA

Particle Identification: "In and Out"

- Spectrograph selects rigidity $B\rho \approx v A/q$
- Reaction product's Z are identified by energy loss.
- Mass number A is identified by path-corrected tof.

Single-Proton Knockout 44S→43P

$$
^{44} S : \pi \left(\alpha \left(d_{3/2} \right)^2 + \beta \left(s_{1/2} \right)^2 + \gamma \left(d_{5/2} \right)^2 \right) \otimes \gamma \left(xyz \right)
$$

$$
\sigma_{{\it sp}}(j,S_p)
$$

$$
\begin{array}{c}\n\textbf{43} \\
\textbf{P}\n\end{array}
$$

γ

$$
\sigma(I^{\pi}) = \sum c^{2S}(j,I^{\pi})\sigma_{sp}(j,S_p)
$$

- Calculate eikonal-approach cross section (J. Tostevin) to knock-out either (here) d $_{5/2}$, d $_{3/2}$, s_{1/2} proton
- Measured cross section allows determination of spectroscopic factors
- Large cross sections mean single particle wave functions

Example: Neutron-knockout

- Example: $34Ar n \equiv > 33Ar + \gamma$
- Multiple final states populated

A. Gade et al.: Phys.Rev.Lett. 93,042501 (2004) M-rich nuclei : Occupation of Single-Particle Orbits

Counting nucleons in singleparticle orbits in exotic nuclei: **1-nucleon removal reactions**

Measured spectroscopic factor C²S relates to the occupation number of the orbit involved

Reduction factor with respect to the shell model $\rm\,R_{s}$ =C²S_{exp}/ C²S_{th}

•**Determination of the occupancies probes the foundations of the nuclear shell model and provides information on the presence of correlation effects beyond effectiveinteraction theory**

•**Reduction has strong dependence on binding energy**

³²Ar and ²²O have the same neutron configuration but the reduction R_s is very different

Single-p knockout: 44S→43P

- Only two final states are populated at large cross sections
- Exp. upper limit on $d_{5/2}$ strength up to 4 MeV: <2 mb
- SM: expect 5/2⁺-strength 2.2 mb at 1.5 MeV, 7.2 mb at 2.2 MeV

Proton shell structure at N=28

● Calculation of pure single particle ko cross-section (J. Tostevin) : $d_{3/2}$: 7.7 mb

 $S_{1/2}$: 6.1 mb total:13.8 mb

● Experiment: total: 7.6(11) mb

- Degenerate $d_{3/2}$ and $s_{1/2}$ states.
- \bullet no significant d_{5/2}-strength observed below 4 MeV
- \bullet Z=14 is a magic number at N=28

2p -Knockout as direct reaction

D. Bazin et al., PRL 91,1 (2003)

- Indirect 2p-removal would go through neutron-unbound region
- => would rather evaporate a neutron and not produce the product in question

- Characteristics of "direct" reactions: excitation of few degrees of freedom in nuclei
- Knowledge of initial and final wavefunction allows quantitative characterization of the reaction
- Relatively strong reaction leading to exotic nuclei

2p-Knockout

• Cross sections in previous examples: Bazin et al PRL 91,1 (2003): $500₁$ 28 Mg \rightarrow ^{26}Si , σ = 1.5 mb 400 $^{34}\text{Si} \rightarrow ^{32}\text{Mg}, \sigma = 0.76(10) \text{ m}^{\text{B}}_{\text{B}}$ 300 ● Our experiments: 200 $^{46}Ar \rightarrow ^{44}S$, $\sigma = 0.23(2)$ mb 520 540 560 $^{44}S \rightarrow ^{42}Si$, $\sigma = 0.12(2)$ mb Time of flight (channels) Strawman-calculation: ● Calculations: (Brown / Tostevin) without $Z=14$ -gap $^{46}Ar \rightarrow ^{44}S$, $\sigma = 0.36$ mb $^{46}Ar \rightarrow ^{44}S$, $\sigma = 2.9$ mb $^{44}S \rightarrow ^{42}Si$, $\sigma = 0.17$ mb $^{44}S \rightarrow ^{42}Si$, $\sigma = 1.7 mb$

• Reduced cross sections are result of $Z=14$ shell closure: Few valence nucleons available for reaction.

Shell-model + Eikonal theory

- Calculation using parameters derived from Nowacki PRC63, 44316, (2001)
- Model space $v:(0f_{7/2},1p_{3/2})$ $\pi(0d_{3/2},1s_{1/2},0d_{5/2})$
- Calculate both $^{46}Ar \rightarrow ^{44}S$ and $^{44}S \rightarrow ^{42}Si$ 2p-knockout

2p-Knockout: ⁴²Si γ-spectrum

- Data from \sim 500 42 Si nuclei
- Number of gammas counted $N(γ) / N(42Si) =$ 0.25(3)
- \bullet γ -spectrum is consistent with no peaks observed

Masses- measured at GANIL

• S_{N} in ⁴²Si: 5.9(7) MeV

B.Jurado,W. Mittig et al., to be published

N

5

GANIL: 42Si: low energy gamma-ray

- Bastin, Grevy et al.: PRL 99, 022503 (2007)
- **Two-proton knockout** identifies low-energy 770 keV gamma-ray in ⁴²Si.
- Breakdown of N=28 shell closure ?
- or new mode of collective excitation ?

What's "exotic" about neutron-rich nuclei

- Many (?) examples for modification of shell structure in neutron-rich nuclei are known (N,Z<50)
- What may be the more interesting question: What are the collective excitations of neutron matter ?

Riken: Long lifetime of the low 2+ in ¹⁶C

VOLUME 92. NUMBER 6

PHYSICAL REVIEW LETTERS

week ending 13 FEBRUARY 2004

Anomalously Hindered E2 Strength $B(E2; 2^+_1 \rightarrow 0^+)$ in ¹⁶C

N. Imai, ^{1,*} H. J. Ong, ² N. Aoi, ¹ H. Sakurai, ² K. Demichi, ³ H. Kawasaki, ³ H. Baba, ³ Zs. Dombrádi, ⁴ Z. Elekes, ^{1,†} N. Fukuda,¹ Zs. Fülöp,⁴ A. Gelberg,⁵ T. Gomi,³ H. Hasegawa,³ K. Ishikawa,⁶ H. Iwasaki,² E. Kaneko,³ S. Kanno,³ T. Kishida,¹ Y. Kondo,⁶ T. Kubo,¹ K. Kurita,³ S. Michimasa,⁷ T. Minemura,¹ M. Miura,⁶ T. Motobayashi,¹ T. Nakamura, ⁶ M. Notani, ⁷ T. K. Onishi, ² A. Saito, ³ S. Shimoura, ⁷ T. Sugimoto, ⁶ M. K. Suzuki, ² E. Takeshita, ³ S. Takeuchi, ¹ M. Tamaki, ⁷ K. Yamada, ³ K. Yoneda, $1 + \frac{1}{2}$ H. Watanabe, ¹ and M. Ishihara¹

- Inelastic excitation of ${}^{16}C$
- extremely low $B(E2) = 0.26$ (W.u.)
- Far off systematics of $E(2+)$ vs $B(E2)$

Riken: Neutron – Structure of ¹⁶C

PHYSICAL REVIEW C 73, 024610 (2006)

Neutron-dominant quadrupole collective motion in 16 C

H. J. Ong, ^{1,+} N. Imai,² N. Aoi,² H. Sakurai,¹ Zs. Dombrádi,³ A. Saito,⁴ Z. Elekes,^{2,3} H. Baba,⁴ K. Demichi,⁵ Z. S. Fi J. Gibelin, 5,6 T. Gomi, 2 H. Hasegawa, 5 M. Ishihara, 2 H. Iwasaki, 1 S. Kanno, 5 S. Kawai, 5 T. Kubo, 2 K. Kurita, 5 Y. U. Matsuyama,⁵ S. Michimasa,² T. Minemura,² T. Motobayashi,² M. Notani,^{4,†} S. Ota,⁷ H. K. Sakai,⁵ S. Shimou E. Takeshita,⁵ S. Takeuchi,² M. Tamaki,⁴ Y. Togano,⁵ K. Yamada,² Y. Yanagisawa,² and K. Yoneda²

- Inelastic proton-scattering selectively populates neutron-states
- Cross section corresponds to neutron deformation β_{pp} =0.47(5)
- 2+ energy expected from Neutron deformation

C16 – Neutron collectivity ?

• 2N+core cluster model

Three-body model calculations for the ¹⁶C nucleus

K. Hagino¹ and H. Sagawa² ¹Department of Physics, Tohoku University, Sendai, 980-8578, Japan 2 Center for Mathematical Sciences, University of Aizu, Aizu-Wakamatsu, Fukushima 965-8560, Japan (Received 10 December 2006; published 22 February 2007)

A new type of collectivity ?

Deformed neutron density

- How to explain small B(E2): "Decoupling" of neutrons or "Destructive Interference" ?
- The $B(E2)$ strength has to be Spherical proton core somewhere ! Barrier energy Coulomb excitation

- What is the neutron-wavefunction? Pair transfer ${}^{16}C(p,t)$ ¹⁴C (+y ?)
- Are there more, heavier nuclei with this behaviour?
- Is this what we have to expect at the dripline?

Exotic Nuclei: Made to thrill

- Neutron-rich nuclei have shell structure different from their "stable" siblings and their proton-rich mirrors !
- New collective excitations have to be expected: Neutron-only collectivity ?
- We need more detailed experiments than the E(2⁺) B(E2) of the first excited state !