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Mesoscopic system

• Quantum many-body system between 
microscopic (few-body) and macroscopic 
(thermodynamic limit)

• Quantum many-body system with 
identifiable individual quantum states, 
while sufficiently large to reveal 
regularities of statistical nature.  

• Emergence of complexity.



A rich variety of mesoscopic 
systems

• Nano-wires
• Quantum dots
• Helium drops
• Atomic clusters
• Quantum computers

http://www.pa.msu.edu/~tomanek/



• Quantum Dot : 5 metallic 
gates fabricated on the 
surface of a GaAs;  two 
dimensional electron gas 
inside.

• quantum dot can be seen as 
a cavity in which electrons 
bounce at the boundaries 
similar to a billiard table.



Nanotubes

http://pages.unibas.ch/phys-meso/



The nuclear world: the rich variety 
of natural mesoscopic phenomena

• Predicted: 6000 - 7000 particle-stable nuclides
• Observed: 2932
• even-even 737; odd-A 1469; odd-odd 726.
• Lightest        (deuteron), Heaviest 
• No gamma-rays known 785.
• Largest number of levels known (578) 
• Largest number of transitions known 1319
• Highest multipolarity of electromagnetic transition E6 in 

• Resut of 100 years of reasearch 182000 citations in 
Brookhaven database, 4500 new entries per year. 



Nuclear Chart



Single-Particle Motion

• Symmetry, surface and shells
• Shells and supershells
• Single-particle modes and magic numbers
• Symmetry and chaos
• Classical periodic orbits



T. P.Martin Physics Reports 273 (1966) 199-241
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• Symmetry 
• Surface
• “Shells”



Shell Structure in atoms

From A. Bohr and  B.R.Mottleson, Nuclear Structure, vol. 1, p. 191 Benjamin, 1969, New York



Nuclear Magic Numbers, nucleon packaging, stability, 
abundance of elements

From W.D. Myers and W.J. Swiatecki, Nucl. Phys. 81, 1 (1966)



Mean field

Shell gaps N=2,8,20,

Nuclear Woods-Saxon solver
http://www.volya.net/ws/
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   levels 

Nucleon in a box

oscillator square well Woods-saxon



Level density in the Woods-Saxon
Potential: N=1000, 2000, and 3000

Nishioka et. al. Phys. Rev. B 42, (1990) 9377
R.B. Balian, C. Block Ann. Phys. 69 (1971) 76
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Supershells and classical periodic orbits

171A 184A



Nucleon in the potential well
Quantum Billiard

• Shell Model
Levels in nuclei

single-partic le 
   levels 

Nucleon in a box



Chaotic motion
• Non-symmetric 

shape
– Shape changes
– Collective vibrations



Periodic orbitals and shell structure
In the realm of chaos 

•Why some nuclei are more stable than others?
•Why are there shell effects?



Single-nucleon 
motion in 
deformed 
potential

Spherical Deformed



Quantum chaos
Distribution of energy spacing between 

neighboring states

• Regular motion
– Analog to integrable

systems
– No level repulsion 
– Poisson distribution 

P(s)=exp(-s)

• Chaotic motion
– Classically chaotic
– Level repulsion
– GOE (Random Matrix)

P(s)=s exp(-p s2/4)

Circular billiard Irregular triangle billiard



Evolution of shells

• Melting of shell structure
• Shells in deformed nuclei
• Shells in weakly bound nuclei
• Is the mean field concept valid



Shell structure in extreme limits
Shells in nuclei far from stability

Melting of shell structure

T=0 and T=0.4 ev, 
Frauendorf S, Pahskevich VV. NATO ASI Ser. 
E: Appl. Sci., ed. TP Martin, 313:201.  Kluwer (1996)

J. Dobaczewski et al., PRC53, 2809 (1996)



Deformation and shell gaps



Mesoscopic many-body complexity
• Complexity and Chaos

– Typical level density
– Chaotization process, geometric chaoticity
– Random matrix theory
– Enhancement of weak perturbations

• Collective Motion
– Pairing and superconductivity
– Phase transitions
– Giant resonances
– Fission

• Shapes
– Shape change transitions
– Rotations

• Thermodynamics and phase transitions
– Features of small systems
– Thermalization and level density
– Yang-Lee theory, roots of partition functions



Many-nucleons, two-body scatterings
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Nucleons in the box collide (interact)
•Jump from level to level
•Many-body dynamics

‡
Even more complicated motion



Quantum billiards and neutron resonances n + 232Th
Transmission spectrum of a 3D-stadium billiard

T = 4.2 K

Spectrum of neutron resonances in 232Th + n

● Great similarities between the two spectra: universal behaviour



Chaotic motion in nuclei
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Pairing interaction in nuclei
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Rotation 



Evidence of nuclear superfluidity



Pairing Hamiltonian

• Pairing on degenerate time-conjugate orbitals

• Pair operators P =(a1a1)J=0 (J=0, T=1)
• Number of unpaired fermions is seniority s
• Unpaired fermions are untouched by H



Approaching the solution of pairing 
problem

• Approximate
– BCS theory 

• HFB+correlations+RPA

– Iterative techniques
• Exact solution

– Richardson solution
– Algebraic methods
– Direct diagonalization + quasispin symmetry1

1A. Volya, B. A. Brown, and V. Zelevinsky, Phys. Lett. B 509, 37 (2001).



BCS theory



Low-lying states in paired 
systems

• Exact treatment 
– No phase transition and Gcritical
– Different seniorities do not mix
– Diagonalize for pair vibrations

• BCS treatment 

HFB+RPAHF+RPACollective 
excitations

quasiparticle
excitation
Es=2=2 e 

single-particle 
excitations
Es=2=2 ε

Elementary 
excitations

BCSHartree-FockGround state

G>GcriticalG<Gcritical



Cooper Instability in mesoscopic system
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Statistical treatment of pairing

• Microcanonical
• Canonical
• Grand canonical
Partition functions

Statistical averages

Entropy  



Is there thermalization?
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Critical behavior-thermodynamic limit
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Pairing phase diagram



Microcanonical ensemble and 
thermodynamic limit 
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Statistical approach to mesoscopic system
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Phase Transition in Mesoscopic System

ββ

ττ

http://www.cco.caltech.edu/~phys1/java/phys1/EField/EField.html

Complex roots- similar to charges
Appear symmetrically, 
never exactly on real axis

Energy- similar to potential
Roots become poles
Macroscopic accumulation of poles
creates charged surface

Heat Capacity – E-filed



Classification of phase transitions zeros 
in the complex temperature plane

Main Characteristics
• Angle of approach

• Congestion of roots

Classification

First order 
Second order 
Higher order 
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End of lecture
continue reading to learn more…

• Invariant correlational entropy
• Phase diagrams
• Open mesoscopic quantum systems
• Superradiance, quasi-stationary states in 

continuum



Invariant Correlational Entropy
• Parameter-driven equilibration (pairing strength)
• Averaged density matrix

• ICE 

Advantages
•Basis independent 
•Explore individual quantum states
•Needs no heat bath
•No equilibration, thermalization and particle number 
conservation issues. 
•Probe sensitivity of states to noise in external parameter(s)
•Phase transitions -> peaks in ICE



Mg Phase diagram
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Exotic nuclei: Halo Nucleus 11Li
11Li is halo, it is as big a lead

Two neutrons in 11Li are moving on
decaying orbitals!

p1/2

s1/2

p1/2

s1/2

fille
d

fille
d

Two “valence” states are possible



Nuclear reaction theory
Quantum billiards with particle-

leaks
decay

• Due to finite lifetime states acquire width 
(uncertainty in energy G=h/t) 

• Internal complex motion ñ Radiation and decay ?

escape



Superradiance, collectivization by 
decay

Dicke coherent state
N identical two-level atoms
coupled via common radiation 

Analog in nuclei
Interaction via continuum
Trapped states ⇒ self-organization

Volume ¿ λ3

g ~ D and few channels
•Nuclei far from stability
•High level density (states of 

same symmetry)
•Far from thresholds



Shape vibration and GDR
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Simple example: 
Two-spin system

• Two interacting spins 
– Spherical symmetry (triplet and singlet 

states)
• Magnetic field 

– Preserves spherical symmetry
• First spin in sz=1/2 state decays

– Reduces symmetry (Sz is preserved but not 
S2)



• Hamiltonian for Sz=0 

• Complex energies

Features of open system
• Incompatible symmetries
• Many-body versus single-spin properties
• Interaction of two resonances
•Superradiance and separation of states
• “Phase transition”



11Li an example of interacting 
resonances

11Li is stable it is held by interaction
of resonances

11Li is borromean, if one nuclon is
removed it becomes unstable



Scattering and cross section near 
threshold

Scattering Matrix

Cross section

Solution in two-level model



Single-particle decay in many-body 
system
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Total states 8!/(3! 5!)=56; states that decay fast 7!/(2! 5!)=21

•Assume energy independent W
•Assume one channel γ=A2

•System 8 s.p. levels, 3 particles
•One s.p. level in continuum e=ε –iγ/2

Evolution of complex energies E=E-i Γ/2
as a function of γ


