

Alexander Volya

Florida State University

Mesoscopic system

- • Quantum many-body system between microscopic (few-body) and macroscopic (thermodynamic limit)
- • Quantum many-body system with identifiable individual quantum states, while sufficiently large to reveal regularities of statistical nature.
- •Emergence of complexity.

A rich variety of mesoscopic systems

- Nano-wires
- •Quantum dots
- Helium drops
- Atomic clusters
- •Quantum computers

• **Quantum Dot** : 5 metallic gates fabricated on the surface of a GaAs; two dimensional electron gas inside.

• quantum dot can be seen as a cavity in which electrons bounce at the boundaries similar to a billiard table.

Nanotubes

http://pages.unibas.ch/phys-meso/

The nuclear world: the rich variety of natural mesoscopic phenomena

- Predicted: 6000 7000 particle-stable nuclides
- \bullet Observed: 2932
- •even-even 737; odd-A 1469; odd-odd 726.
- Lightest ${}^{2}_{1}H_{1}$ (deuteron), Heaviest
- No gamma-rays known 785.
- •Largest number of levels known (578) $^{40}_{20}$ Ca₂₀
- •Largest number of transitions known 1319 $\frac{53}{25}$ Mn₂₈
- Highest multipolarity of electromagnetic transition E6 in $^{53}_{26}$ Fe₂₇, 19/2⁻ (3040 keV) \rightarrow 7/2⁻(g.s.); 2.58 min
- Resut of 100 years of reasearch 182000 citations in Brookhaven database, 4500 new entries per year.

Nuclear Chart

Single-Particle Motion

- •Symmetry, surface and shells
- •Shells and supershells
- •Single-particle modes and magic numbers
- •Symmetry and chaos
- •Classical periodic orbits

Salt Clusters, transition from small to bulk

- **Symmetry**
- **Surface**
- **"Shells"**

T. P.Martin Physics Reports **273** (1966) 199-241

Shell Structure in atoms

From A. Bohr and B.R.Mottleson, *Nuclear Structure*, vol. 1, p. 191 Benjamin, 1969, New York

Nuclear Magic Numbers, nucleon packaging, stability, abundance of elements

From W.D. Myers and W.J. Swiatecki, Nucl. Phys. **81**, 1 (1966)

Mean field

Nuclear Woods-Saxon solverhttp://www.volya.net/ws/

Shell gaps N=2,8,20,

Level density in the Woods-Saxon Potential: N=1000, 2000, and 3000

Supershells

Binding energy, deviation from average

Nishioka et. al. Phys. Rev. B **42**, (1990) 9377 R.B. Balian, C. Block Ann. Phys. **69** (1971) 76

Supershells and classical periodic orbits

Nucleon in the potential well Quantum Billiard

• Shell Model

Levels in nuclei

Chaotic motion

- Non-symmetric shape
	- Shape changes $k_1 = 9.61977$ $k_2 = 13.6261$ $k_3 = 15.5872$ $k_4 = 17.594$ $k_5 = 19.5959$ $k_6 = 21.5601$ $k_7 = 21.5785$ $k_8 = 23.5754$ $k_9 = 25.4996$

Periodic orbitals and shell structure

In the realm of chaos

•Why some nuclei are more stable than others? •Why are there shell effects?

Single-nucleon motion in deformed potential

Quantum chaos Distribution of energy spacing between neighboring states

- • Regular motion
	- Analog to integrable systems
	- No level repulsion
	- Poisson distribution $P(s)=exp(-s)$

- \bullet Chaotic motion
	- Classically chaotic
	- Level repulsion
	- GOE (Random Matrix) P(s)=s exp(- π s $^{2}/4)$

Evolution of shells

- •Melting of shell structure
- Shells in deformed nuclei
- •Shells in weakly bound nuclei
- •Is the mean field concept valid

Shell structure in extreme limits

Melting of shell structure

 $T=0$ and $T=0.4$ ev, Frauendorf S, Pahskevich VV. *NATO ASI Ser. E: Appl. Sci*., ed. TP Martin, 313:201. Kluwer (1996)

Deformation and shell gaps

Mesoscopic many-body complexity

- Complexity and Chaos
	- Typical level density
	- Chaotization process, geometric chaoticity
	- Random matrix theory
	- Enhancement of weak perturbations
- Collective Motion
	- Pairing and superconductivity
	- Phase transitions
	- Giant resonances
	- Fission
- Shapes
	- Shape change transitions
	- Rotations
- Thermodynamics and phase transitions
	- Features of small systems
	- Thermalization and level density
	- Yang-Lee theory, roots of partition functions

Many-nucleons, two-body scatterings

Quantum billiards and neutron resonances n + 232

 \bullet Great similarities between the two spectra: universal behaviour

Chaotic motion in nuclei

"Cold" (low excitation) rare-earth nuclei

High-Energy region, Nuclear Data Ensemble Slow neutron resonant date Haq. et.al. PRL 48, 1086 (1982)

Pairing interaction in nuclei

Rotation

Evidence of nuclear superfluidity

Pairing Hamiltonian

- Pairing on degenerate time-conjugate orbitals $|1\rangle \leftrightarrow |\tilde{1}\rangle$ $|j\tilde{m}\rangle = (-1)^{j-m}|j-m\rangle$
- Pair operators $P=({\bf a}_1{\bf a}_1)_{\sf J=0}\,$ (J=0, T=1)
- Number of unpaired fermions is seniority ^s
- •Unpaired fermions are untouched by H

Approaching the solution of pairing problem

- Approximate
	- BCS theory
		- HFB+correlations+RPA
	- Iterative techniques
- Exact solution
	- Richardson solution
	- Algebraic methods
	- Direct diagonalization + quasispin symmetry¹

1A. Volya, B. A. Brown, and V. Zelevinsky, Phys. Lett. B 509, 37 (2001).

BCS theory

Trial wave-function $|0) = \prod_{\nu} (u_{\nu} - v_{\nu} a_{\nu}^{\dagger} a_{\nu}^{\dagger}) |0\rangle$, where $\frac{|u_{\nu}|^2}{|u_{\nu}|^2 + |v_{\nu}|^2} = 1$

Minimization of energy determines

$$
|v_{\nu}|^2 = \frac{1}{2} \left(1 - \frac{\epsilon_{\nu} - \mu}{e_{\nu}} \right), \quad |u_{\nu}|^2 = \frac{1}{2} \left(1 + \frac{\epsilon_{\nu} - \mu}{e_{\nu}} \right)
$$

Gap equation

$$
\Delta_{\nu} = \frac{1}{4} \sum_{\nu'} G_{\nu \nu'} \frac{\Delta_{\nu'}}{e_{\nu'}}, \text{ where } e_{\nu} = \sqrt{(\epsilon_{\nu} - \mu)^2 + \Delta_{\nu}^2}
$$

Low-lying states in paired systems

•Exact treatment

- $\,$ No phase transition and $G_{\rm critical}$
- –Different seniorities do not mix
- –Diagonalize for pair vibrations
- •BCS treatment

Cooper Instability in mesoscopic system

BCS versus Exact solution

Statistical treatment of pairing

- Microcanonical
- Canonical
- Grand canonical Partition functions $\hat{\mathbf{r}}$

$$
Z = \text{Tr}(\hat{\rho}) \quad \text{and} \quad \hat{w} = \frac{\rho}{Z}
$$

Statistical averages

$$
\langle \hat{O} \rangle = \frac{\text{Tr}(O\hat{\rho})}{\text{Tr}(\hat{\rho})} = \text{Tr}(\hat{O}\hat{w})
$$

Entropy

$$
S = -\langle \ln(\hat{w}) \rangle = -\text{Tr}(\hat{w} \ln \hat{w})
$$

Is there thermalization?

Temperature [MeV]

Pairing phase diagram

Microcanonical ensemble and

Phase Transition in Mesoscopic System
plex roots- similar to charges $Z(R) = 0$, $R = 0 + i\tau$

Complex roots- similar to charges Appear symmetrically, never exactly on real axis

$$
Z(\beta) = \Omega \prod_{j} \left(1 - \frac{\beta}{\beta_j}\right) \left(1 - \frac{\beta}{\beta_j^*}\right).
$$

Energy- similar to potential Roots become poles Macroscopic accumulation of poles creates **charged surface**

Heat Capacity – E-filed

$$
C_V = \beta^2 \frac{\partial^2 \ln \mathcal{Z}}{\partial \beta^2} = \beta^2 \sum_j \left(\frac{1}{(\mathcal{B}_j - \beta)^2} + \frac{1}{(\mathcal{B}_j^* - \beta)^2} \right).
$$

Classification of phase transitions zeros in the complex temperature plane

 $1 < \alpha$

 $\bm{\tau}$ $\bm{\Lambda}$

Main Characteristics

• Angle of approach

$$
\nu = \arctan \frac{\beta_2 - \beta_1}{\tau_2 - \tau_1}
$$

• Congestion of roots $|\mathcal{B}_{i+1}-\mathcal{B}_i|\sim \tau_i^{-\alpha}$

Classification

First order $\nu = 0$ $\alpha = 0$ Second order $0 < \alpha < 1$ Higher order

$$
\begin{array}{c}\n\bullet \\
\bullet \\
\bullet \\
\hline\n\end{array}
$$

End of lecturecontinue reading to learn more…

- Invariant correlational entropy
- Phase diagrams
- •Open mesoscopic quantum systems
- • Superradiance, quasi-stationary states in continuum

Invariant Correlational Entropy

- Parameter-driven equilibration (pairing strength)
- Averaged density matrix

$$
|\alpha\rangle = \sum_{k} C_{k}^{\alpha}(G)|k\rangle
$$

$$
\hat{\rho} = \frac{1}{\delta G} \int_G^{G + \delta G} \hat{\rho}(G) \quad \rho_{k,k'}^{\alpha} = \langle k | \alpha \rangle \langle \alpha | k' \rangle
$$
ICE

$$
I^{\alpha} = -\text{Tr}(\overline{\rho^{\alpha}} \ln \overline{\rho^{\alpha}})
$$

Advantages

•

- •Basis independent
- •Explore individual quantum states
- •Needs no heat bath
- •No equilibration, thermalization and particle number conservation issues.
- •Probe sensitivity of states to noise in external parameter(s)
- •Phase transitions -> peaks in ICE

Mg Phase diagram

Exotic nuclei: Halo Nucleus 11Li

¹¹Li is halo, it is as big a lead

Two neutrons in ¹¹Li are moving on decaying orbitals!

Two "valence" states are possible

- \bullet Due to finite lifetime states acquire width (uncertainty in energy $\Gamma{=}\mathsf{h}/\tau)$
- \bullet Internal complex motion \Leftrightarrow Radiation and decay ?

Superradiance, collectivization by decay **Analog in nuclei**

Dicke coherent state

N identical two-level atomscoupled via common radiation

Single atom γ

Coherent state $\Gamma \sim N\gamma$

Volume $\ll \lambda^3$

Interaction via continuumTrapped states \Rightarrow self-organization

 $\gamma \sim D$ and few channels •Nuclei far from stability •High level density (states of same symmetry) •Far from thresholds

Shape vibration and GDR

Simple example: Two-spin system

- Two interacting spins
	- Spherical symmetry (triplet and singlet states)
- • Magnetic field
	- Preserves spherical symmetry
- First spin in s^z=1/2 state decays
	- Reduces symmetry (S^z is preserved but not S 2)

• Hamiltonian for $S^z=0$

$$
\mathcal{H} = -\frac{\alpha}{4} + \frac{1}{2} \begin{pmatrix} -i\gamma & \alpha \\ \alpha & 0 \end{pmatrix}
$$

•Complex energies

$$
\mathcal{E}_{\pm} = -\frac{\alpha}{4} \pm \frac{1}{2} \sqrt{\alpha^2 - \left(\frac{\gamma}{2}\right)^2 - i\frac{\gamma}{4}}
$$

Features of open system

- Incompatible symmetries
- Many-body versus single-spin properties
- Interaction of two resonances
- •Superradiance and separation of states
- "Phase transition"

Scattering and cross section near threshold

Scattering Matrix

 $S^{ab} = (s^a)^{1/2} (\delta^{ab} - T^{ab})(s^b)^{1/2}$

where $s^a = \exp(i\delta_a)$ is smooth scattering phase

$$
T^{ab}=\sum_{12}A_1^{a*}\,\left(\frac{1}{E-\mathcal{H}}\right)_{12}A_2^b
$$

Solution in two-level model

$$
T(E) = \frac{E(\gamma_1 + \gamma_2) - \gamma_1 \epsilon_2 - \gamma_2 \epsilon_1 - 2vA_1A_2}{(E - \mathcal{E}_+)(E - \mathcal{E}_-)}
$$

Cross section

$$
\sigma(E) = \frac{\pi}{k^2} |S(E) - 1|^2
$$

Single-particle decay in many-body

system

Evolution of complex energies E =E-i Γ /2 as a function of γ

Total states 8!/(3! 5!)=56; **states that decay fast 7!/(2! 5!)=21**