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Synopsis: Three Lectures
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SRR | Building Nuclei
Nucleons, NN forces, Effective Forces

Few-body dynamics, Halo Nuclei

Il. Nuclear Structure
Liquid Drop,
Shell model,
Density Functional Descriptions

Il1. Nuclear Reactions

Types of Reactions,
Scattering, Mechanisms
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@ | am a theorist

Ph.D. in New Zealand; Postdoc. at Daresbury Lab (UK)
Teaching at Bristol, then Surrey University, up to 2006
Solving quantum reaction problems (also halo structure)

Comparisons of ‘good theories’ with experiments.

1 year ago: moved to Lawrence Livermore Lab (CA)

@ Writing a Book on Reaction Theory



Who are you?
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Many students!
@ Theory or Experiment?

@ Beginning Ph.D. or mid Ph.D., or postdoc?
(where in the U.S., or overseas?)

@ Which experiments are interesting?
@ What do you hope to learn?



Building Nuclei

The Physics We look for how the quarks makes nucleons,
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Building which interact to make nuclei.

Nuclei

The Islands of Hadronic and Nuclear Physics
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= Using Nuclei
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Beams and Targets (or electrons)

Know your target!

Test fundamental symmetries
E.g. by mixing intrinsic nuclear symmetries

Nuclear astrophysics
Nucleosynthesis, supernovae, neutron stars

New structures of exotic nuclei
E.g. near the proton and neutron drip lines



= Fermionic Many-Body Systems
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Nuclei Resolution determines level of Dynamical Detail.

lan Thompso Entities and Effective Interactions also vary with resolution
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Principles of Effective Theories 1




Principles of Effective Theories 2
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If system is probed at low energies, fine details not resolved



Principles of Effective Theories 3
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If system is probed at low energies, fine details not resolved
e use low-energy variables for low-energy processes
e short-distance structure can be replaced by something simpler
without distorting low-energy observables



Two-nucleon phenomena
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@ NN Scattering
(nn, np, pp)
Phase shift analysis:

@ Deuteron Bound State:
Binding 2.224 MeV,

Start from the simplest experiments:

Quadrupole moment 0.282 fm?2.

Nuclei start when nucleons are resolved

Phase shift § vs. E  [MeV]
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Phenomenological NN Potentials
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Use meson exchange forms
Adjust parameters and cutoffs

Reproduce low-energy scattering lengths etc
app = —17.3£0.4 fm; ap, = —18.8 £ 0.3 fm;
anp = —23.75 £ 0.1 fm;
Note that Vj, # Vip # Vin.

Main features

Strong tensor force,
Strong repulsive core at short distances.



Examples of NN Potentials
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Huctel Wiringa, Stoks, Schiavilla, PRC 51, 38 (1995)

Coulomb + One-pion exchange + intermediate- and

short-range

lan Thompson

Bonn potential
R. Machleidt, PRC63, 024001 (2001)
Based on meson-exchange, Non-local

Effective field theory
Ordéiiez, Ray, van Kolck, PRC 53, 2086 (1996);
Epelbaoum, Glockle, Meissner, NPA 637, 107
(1998)
Based on Chiral Lagrangians
Expansion in momentum up to cutoff ~ 1 GeV
Generally has a soft core
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Elastic scattering in momentum space

NN " _L (UI 'q)(gl ) q}
Vioeut (q k k} aM? q1 + m:

or through a Fourier transform, in coordinate space:

g1 3 3 A A et
v, = M 3m,,[cr a +[1+w+(w)2](301 ro,'r-og, UJ}}W

Off-shell component present in the Bonn potentials

(E'+M)E+M)( 0K @, k) (oz-k'_ 01-1«]

2
P (k',k} 8. :
E'+M E+M

aM* (K-k)+m: \E'+M E+M

Non-local (depends on initial and final momenta).
Plays a role in many-body applications: more
binding



Three-Nucleon Interactions
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Needed to Bind A = 3 nuclei
Two-nucleon interactions under-bind
Note CD-Bonn has a little more binding due to
non-local terms

Further evidence
from by ab initio calculations for 1°B:
NN-interactions give the wrong ground-state spin!
Example: Tucson-Melbourne Force
S.A. Coon and M.T. Pefia, PRC 48, 2559 (1993)
Based on two-pion exchange and intermediate As
The exact form of NNN is not known



Three-Body Dynamics
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Building For two particles we use Schrdinger equation

PN For three and four, there are Faddeev and Faddeev-Yakubovsky
formulations oy, +
Three-body Jacobi Coordinates: Y, = E _IHO 7}(11’; Hpk)

Rl vy, L

1:.
-H,
(E _Ho _st)‘pl = V23(P12P23 + Plspza)lpl

W. Gléckle in Computational Nuclear Physics, Springer-Verlag,
Berlin, 1991

’ Exact methods exist for A < 4. ‘




Effects of Three-Nucleon Force

The Physics
of Nuclei — I:
Building
Nuclei

lan Thompso

Binding of Triton (*H) without and with Tucson-Melbourne
Force
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More than Four Bodies?
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@ Liquid-drop Models: see lecture Il.
(l[l |dly > = lim (wmm |ae_7ﬁ |Wm:>
@ Greens Function Monte Carlo = Wriale™ W)
Ycyaia;y Coaiajaga ...
o Coupled-cluster ¥=¢’ Vg
@ Shell model (lecture Il.) o(n) 4(r) - or)
¢=L¢j(rl) ¢,(r) #,(rs)
Ja oo
¢1(r1) ¢z(rz) ¢1(rA)
=a;...a;q;|0)

@ Mean-field (energy density functional) methods (lecture

I1.)



Cluster Models for Halo Nuclei
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Composition One or two neutrons (or protons) outside a core
nucleus.

Interesting New physics away from valley of stability
Borromean Borromean three-body systems bound, even
though no pairwise (two-body) bound states:




Examples of Halo Nuclei
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SRR One neutron:
1Be (S, = 0.504 MeV)
Two-neutron Borromean:
®He (Sp, = 0.97 MeV),
HLi (S, = 0.30 MeV),
One-proton
8B (S, = 0.137 MeV),

Two-proton Borromean:
1"Ne (Syp = 0.96 MeV),

Excited state
halo

] ion2on]21y|

[17¢]18¢|19¢[20¢]

Halo or skin?

Proton number

N=8 shell closure?

Borromean

12 34567 89 1011121314
E

Neutron number




=+ Why Study Haloes?
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Continuum is near to bound states, long tails to bound
states, so large cross sections & dynamic distortion in
reactions.

@ See prominent single-particle states

@ See pairing outside nuclear surface:
in two-neutron halo ground states;
in two-neutron continuum via breakup; and
in two-proton decay via tunnelling

@ See bound states in classically forbidden regions.



First Halo: !Be
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Borromean Halo: °He
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@ Two Neutrons and an « particle bound at Sy, = 0.97 MeV

@ n-a unbound, but p3/, resonance at 0.8 MeV
n-n unbound, but virtual state a,, = —18.8 = 0.3 fm

008

Probability density
004

Im(k)

Bound
State
E<0

Virtual
State
E<Q

Resonance
Re(E) >0



= Experimental Evidence

The Physics

R Study of halo nuclei (officially)
Nuctel began with measurement of

interaction cross sections in

Berkeley in 1985.
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Lithium isotopes
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Two-proton Decay
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Not via point diproton
10.5 7 - e - 4 10—13
@ Need three-body models _ e - E
. .. . . < 10" — ERE
with pairing in exterior 2 . - T 0®
- - . . - 10716 ,K - - 3 4 g
@ Prediction: pairing acts to£ 7 - wni 3 0 7
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. 28 A, —— Three-body B
cluster-nucleus relative 1o ! e Twopdon 1=1,, § 10°
. 2 I i i 4
motion. 0 s 10 15 20 25 a0

E (MeV)



Using Few-Body Methods for More Bodies
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Summary:

@ Cluster Models.
@ Greens Function Monte Carlo

| O| _ 11 <lpmal
poe < trzal

H |1/}mal >
BH ‘UJmal >

< exact exact >




Monte Carlo Methods
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@ For smaller systems (finite or in a box with pbc’s)
FR0USzEE — approximate energy and full many-body wave function

e Variational, diffusion, path integral, Green’s function MC
o All use the Metropolis algorithm: random walkers
@ Variational Monte Carlo (VMC): Estimate (E) = [dR p(R) E.(R)
o local energy E;(R) = %27 with trial wave function ¢r(R)
are A R G))
o probability distribution p(R) = W
o accept step to R’ if p = %2(R’)/¥2(R) > 1,
else if p < 1 accept with probability p
minimize (E) or variance of E;(R) with respect to variational
parameters in ¥ 1(R)
@ gives upper bound to ground state E

@ Requires very good trial wave function for reliable results



Finding the Ground State
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fh \I!(R T)= fh—MV V(R,7) + V(R)V(R, 1)

o Use Metropolis to propagate to large = = projects ground state
V(R 7) = / dR' G(R,R', 7) V(R',7)

o Take many steps with small ~ approximation to G
o Generates “walker representation” of wave function (a set of R;’s)
= can only represent a positive density

@ Fermion sign problem for diffusion, path integral, GFMC
o for fermions, even ground-state wavefunction changes sign
(anti-symmetric)
o if trial function provides good representation of nodes, solve in
regions with nodal boundary conditions (“fixed node”)



Results for Light Nuclei
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Results for Light Nuclei
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Results for Light Nuclei
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