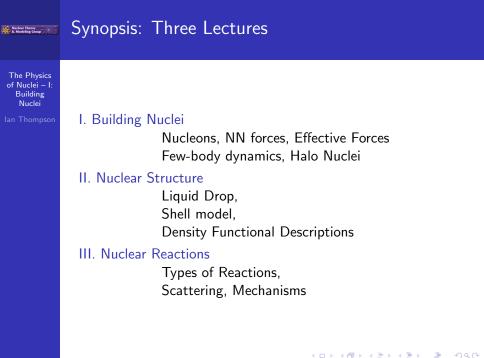
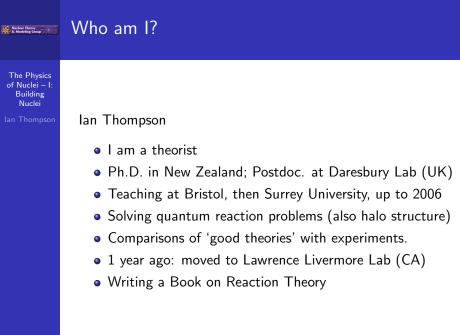


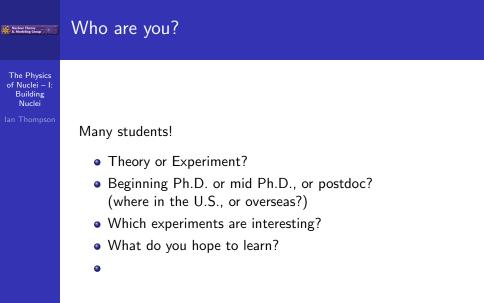
The Physics of Nuclei – I: Building Nuclei

lan Thompson


The Physics of Nuclei – I: Building Nuclei

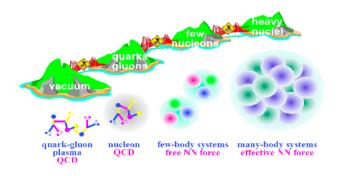

Ian Thompson

Nuclear Theory and Modeling Group Lawrence Livermore National Laboratory I-Thompson@llnl.gov NNPSS: July 9-11, 2007 in Tallahassee, FL.


UCRL-PRES-232487

Work performed under the auspices of the University of California, contract No. W-7405-Eng-48.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●



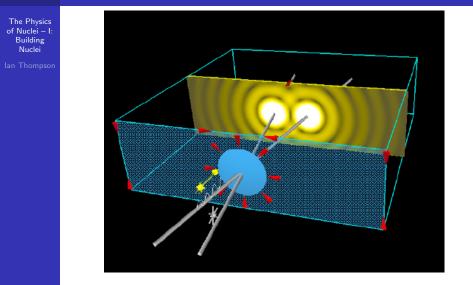
Nuclear Theory & Modeling Group

Building Nuclei

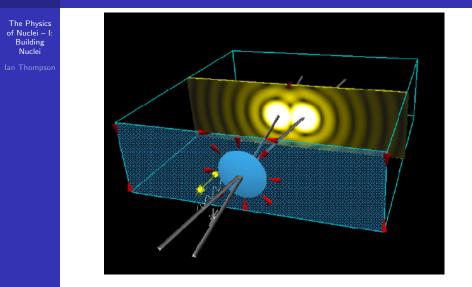
The Physics of Nuclei – I: Building Nuclei We look for how the quarks makes nucleons, which interact to make nuclei.

The Islands of Hadronic and Nuclear Physics

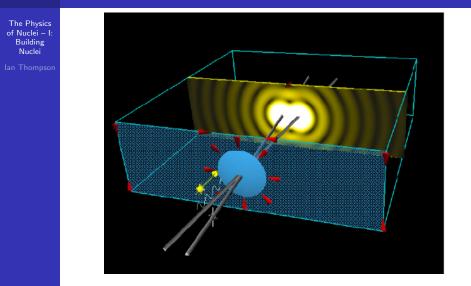
Nuclear Theory A. Modeling Group	Using Nuclei
The Physics of Nuclei – 1: Building Nuclei Ian Thompson	Beams and Targets (or electrons) Know your target! Test fundamental symmetries E.g. by mixing intrinsic nuclear symmetries Nuclear astrophysics Nucleosynthesis, supernovae, neutron stars
	New structures of exotic nuclei E.g. near the proton and neutron drip lines

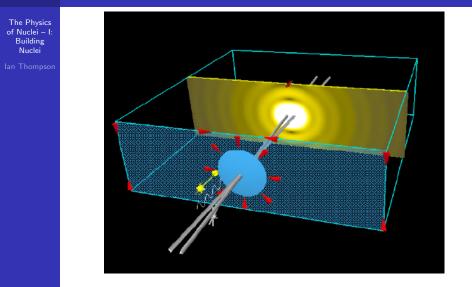

Fermionic Many-Body Systems

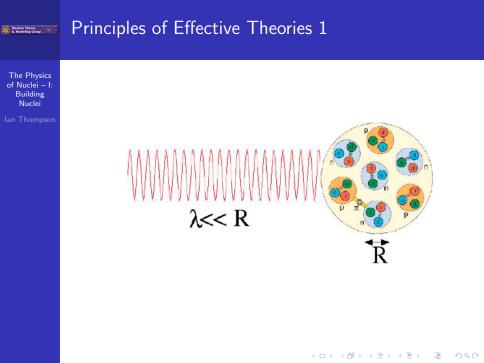
The Physics of Nuclei – I: Building Nuclei

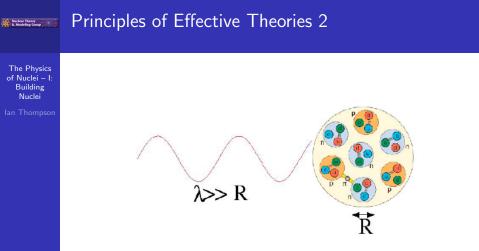

Nuclear Theory

Resolution determines level of Dynamical Detail. Entities and Effective Interactions also vary with resolution

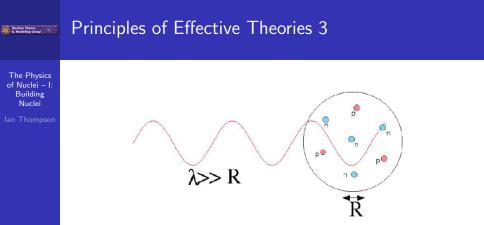

Sit Viewing screen


▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



▲□▶ ▲□▶ ▲目▶ ▲目▶ 三回 のへの


▲□▶ ▲□▶ ▲注▶ ▲注▶ … 注: のへ⊙

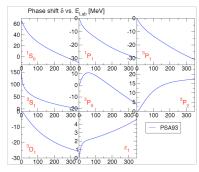
If system is probed at low energies, fine details not resolved

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

If system is probed at low energies, fine details not resolved

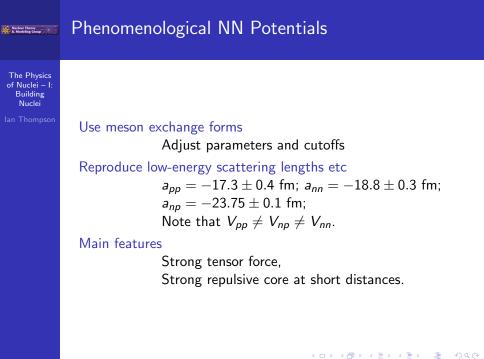
- use low-energy variables for low-energy processes
- short-distance structure can be replaced by something simpler without distorting low-energy observables

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●


Two-nucleon phenomena

The Physics of Nuclei – I: Building Nuclei

Nuclei start when nucleons are resolved


Start from the simplest experiments:

- NN Scattering (nn, np, pp)
 Phase shift analysis:
- Deuteron Bound State: Binding 2.224 MeV, Quadrupole moment 0.282 fm².

イロト 不得 トイヨト イヨト

- 10

Examples of NN Potentials

The Physics of Nuclei – I: Building Nuclei

Argonne potentials

Wiringa, Stoks, Schiavilla, PRC 51, 38 (1995) Coulomb + One-pion exchange + intermediate- and short-range

Bonn potential

R. Machleidt, PRC63, 024001 (2001) Based on meson-exchange, Non-local

Effective field theory

Ordóñez, Ray, van Kolck, PRC 53, 2086 (1996);
Epelbaoum, Glöckle, Meissner, NPA 637, 107 (1998)
Based on Chiral Lagrangians
Expansion in momentum up to cutoff ~ 1 GeV
Generally has a soft core

Theory of NN Potentials

The Physics of Nuclei – I: Building Nuclei

Look at main part – π -exchange:

Elastic scattering in momentum space $V_{local}^{\pi NN}(\mathbf{q} = \mathbf{k}' - \mathbf{k}) = -\frac{g_{\pi}^2}{4M^2} \frac{(\sigma_1 \cdot \mathbf{q})(\sigma_1 \cdot \mathbf{q})}{\mathbf{q}^2 + m_{\pi}^2}$

or through a Fourier transform, in coordinate space: $V_{\pi} = \frac{g_{\pi}^2}{4M^2} \frac{1}{3} m_{\pi} \left[\sigma_i \cdot \sigma_j + \left(1 + \frac{3}{\mu r} + \frac{3}{(\mu r)^2} \right) (3\sigma_i \cdot \hat{\mathbf{r}} \sigma_i \cdot \hat{\mathbf{r}} - \sigma_i \cdot \sigma_j) \right] \frac{e^{-\mu r}}{\mu r}$

Off-shell component present in the Bonn potentials $V^{\text{TNN}}(\mathbf{k}', \mathbf{k}) = -\frac{g_{\pi}^2}{4M^2} \frac{(E'+M)(E+M)}{(\mathbf{k}'-\mathbf{k})^2 + m_{\pi}^2} \left(\frac{\sigma_1 \cdot \mathbf{k}'}{E'+M} - \frac{\sigma_2 \cdot \mathbf{k}}{E+M}\right) \times \left(\frac{\sigma_2 \cdot \mathbf{k}'}{E'+M} - \frac{\sigma_1 \cdot \mathbf{k}}{E+M}\right)$

> Non-local (depends on initial and final momenta). Plays a role in many-body applications: more binding

Three-Nucleon Interactions

The Physics of Nuclei – I: Building Nuclei

Look at main part, pion-exchange:

lan Thompson

Needed to Bind A = 3 nuclei

Two-nucleon interactions under-bind Note CD-Bonn has a little more binding due to non-local terms

Further evidence

from by ab initio calculations for ¹⁰B: NN-interactions give the wrong ground-state spin!

Example: Tucson-Melbourne Force

S.A. Coon and M.T. Peña, PRC 48, 2559 (1993) Based on two-pion exchange and intermediate Δs The exact form of NNN is not known

Nuclear Theory & Modeling Group

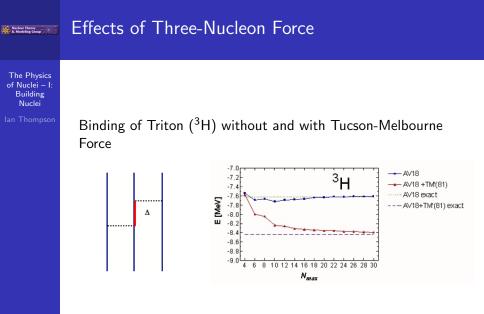
Three-Body Dynamics

The Physics of Nuclei – I: Building Nuclei

For two particles we use Schrdinger equation For three and four, there are Faddeev and Faddeev-Yakubovsky formulations $\Psi = \psi_1 + \psi_2 + \psi_3$

 $\psi_i = \frac{1}{E - H_o} T_i (\psi_j + \psi_k)$

Three-body Jacobi Coordinates:


 $\vec{R} = \frac{1}{3} (\vec{r}_i + \vec{r}_j + \vec{r}_k) \qquad H_0 = \sum_i \frac{\vec{p}_i^2}{2m_i}$ $\vec{y}_i = \sqrt{\frac{2}{3}} (\vec{r}_i - \frac{1}{2} (\vec{r}_j + \vec{r}_k)) \quad T_i = V_{jk} + V_{jk} \frac{1}{E - H_0} T_i$ $(E - H_0 - V_{23}) \psi_1 = V_{23} (P_{12} P_{23} + P_{13} P_{23}) \psi_1$

W. Glöckle in Computational Nuclear Physics, Springer-Verlag,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Berlin, 1991

Exact methods exist for $A \leq 4$.

▲□▶ ▲□▶ ★ □▶ ★ □▶ - □ - の Q @

More than Four Bodies? Nuclear Theory

The Physics of Nuclei - I: Building Nuclei

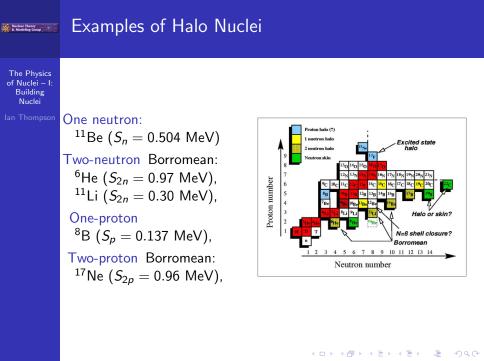
Synopsis of what we can do:

- Cluster Models.
- Liquid-drop Models: see lecture II.
- $\left\langle \Psi_{exact} \left| \hat{O} \right| \Psi_{exact} \right\rangle = \lim_{\beta \to \infty} \frac{\left\langle \psi_{trial} \left| \hat{O} e^{-\beta \hat{H}} \right| \psi_{trial} \right\rangle}{\left\langle \psi_{trial} \left| e^{-\beta \hat{H}} \right| \psi_{triat} \right\rangle}$ Greens Function Monte Carlo • Coupled-cluster $\Psi = e^{\sum_{i} C_{ij}a_i^*a_j + \sum_{ijk} C_{ijk}a_i^*a_j^*a_ka_l + \dots} \psi_{ref}$
- $\boldsymbol{\phi} = \frac{1}{\sqrt{A!}} \begin{vmatrix} \phi_i(\mathbf{r}_1) & \phi_i(\mathbf{r}_2) & \dots & \phi_i(\mathbf{r}_A) \\ \phi_j(\mathbf{r}_1) & \phi_j(\mathbf{r}_2) & \phi_j(\mathbf{r}_A) \\ \vdots & \ddots & \vdots \end{vmatrix}$ Shell model (lecture II.) $\phi_i(\mathbf{r}_1) \phi_i(\mathbf{r}_2) \dots \phi_i(\mathbf{r}_n)$ $=a_i^+\ldots a_i^+a_i^+|0\rangle$
- Mean-field (energy density functional) methods (lecture II.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Cluster Models for Halo Nuclei

The Physics of Nuclei – I: Building Nuclei


lan Thompson

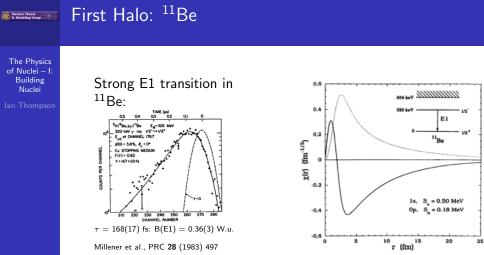
Definition Weakly-bound nuclei near drip line that are large Composition One or two neutrons (or protons) outside a core nucleus.

Interesting New physics away from valley of stability Borromean Borromean three-body systems bound, even though no pairwise (two-body) bound states:

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

Nuclear Theory & Modeling Group

Why Study Haloes?


The Physics of Nuclei – I: Building Nuclei

lan Thompson

• Good few-body system:

Continuum is near to bound states, long tails to bound states, so large cross sections & dynamic distortion in reactions.

- See prominent single-particle states
- See pairing outside nuclear surface: in two-neutron halo ground states; in two-neutron continuum via breakup; and in two-proton decay via tunnelling
- See bound states in classically forbidden regions.

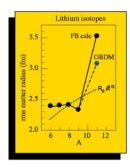
"We note that to obtain the $1s_{1/2}p_{1/2}$ matrix element for low binding energies it is necessary to integrate out to large radii"

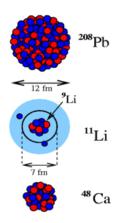
Borromean Halo: ⁶He

The Physics of Nuclei – I: Building Nuclei

lan Thompson

- Two Neutrons and an α particle bound at $S_{2n} = 0.97$ MeV
- n- α unbound, but $p_{3/2}$ resonance at 0.8 MeV
 - n-n unbound, but virtual state $a_{nn} = -18.8 \pm 0.3$ fm



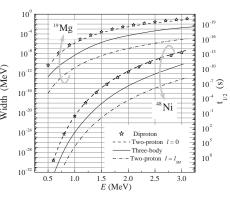


Experimental Evidence

The Physics of Nuclei – I: Building Nuclei

Study of halo nuclei (officially) began with measurement of interaction cross sections in Berkeley in 1985.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○

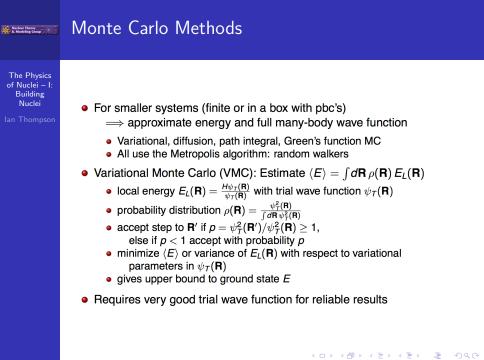

Two-proton Decay

The Physics of Nuclei – I: Building Nuclei

Nuclear Theory

lan Thompson

- Not via point diproton
- Need three-body models with pairing in exterior
 Prediction: pairing acts to ¹⁹/₂₀
 - Prediction: pairing acts to correlate the protons to enhance L = 0 cluster-nucleus relative motion.



・ロト ・ 雪 ト ・ ヨ ト

- 10

Using Few-Body Methods for More Bodies Nuclear Theory The Physics of Nuclei - I: Building Nuclei Summary: Cluster Models. Greens Function Monte Carlo $\left\langle \Psi_{exact} \left| \hat{O} \right| \Psi_{exact} \right\rangle = \lim_{\beta \to \infty} \frac{\left\langle \psi_{trial} \left| \hat{O} e^{-\beta \hat{H}} \right| \psi_{trial} \right\rangle}{\left\langle \psi_{...,l} \right| e^{-\beta \hat{H}} \left| \psi_{...,l} \right\rangle}$

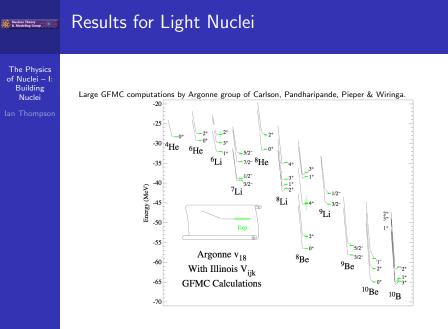
◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

Finding the Ground State

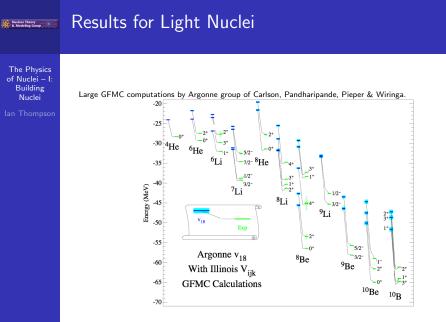
The Physics of Nuclei – I: Building Nuclei

Nuclear Theory

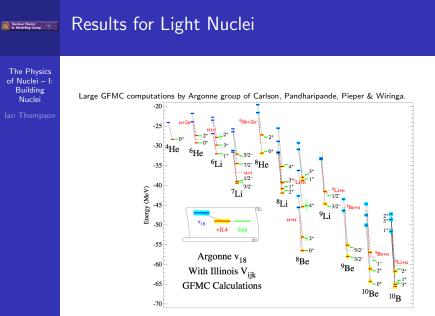
lan Thompson


• DMC and GFMC exploit S–equation in imaginary time \implies diffusion!

$$-\hbar \frac{\partial}{\partial \tau} \Psi(\mathbf{R}, \tau) = -\frac{\hbar^2}{2M} \nabla^2_{\mathbf{R}} \Psi(\mathbf{R}, \tau) + V(\mathbf{R}) \Psi(\mathbf{R}, \tau)$$


• Use Metropolis to propagate to large $\tau \Longrightarrow$ projects ground state

$$\Psi(\mathbf{R}, au) = \int d\mathbf{R}' \, G(\mathbf{R}, \mathbf{R}', au) \, \Psi(\mathbf{R}', au)$$


- Take many steps with small τ approximation to G
- Generates "walker representation" of wave function (a set of **R**_i's) ⇒ can only represent a positive density
- Fermion sign problem for diffusion, path integral, GFMC
 - for fermions, even ground-state wavefunction changes sign (anti-symmetric)
 - if trial function provides good representation of nodes, solve in regions with nodal boundary conditions ("fixed node")

(日) (日) (日) (日) (日) (日) (日)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 - のへで

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 「豆」 のへで