Charmonium

Xiaoguang Li University of Tennessee at Knoxville

National Nuclear Physics Summer School 2007 Florida State University

"Charmonium"

$n^{2s+1}\ell_J J^{PC}$	$I = 0$ $c\overline{c}$	CC meson states
$1 {}^{1}S_{0} = 0^{-+}$	$\eta_c(1S)$	
$1 {}^3S_1 1^{}$	$J/\psi(1S)$	🍃 Parity 🔤
$1 {}^{1}P_{1} \qquad 1^{+-}$	$h_c(1P)$	$(-1)^{L+S}$
$1 {}^{3}P_{0} = 0^{++}$	$\chi_{c0}(1P)$	
$1 {}^{3}P_{1}$ 1++	$\chi_{c1}(1P)$	
$1 {}^{3}P_{2} 2^{++}$	$\chi_{c2}(1P)$	C-parity
$1 {}^{3}D_{1}$ 1	$\psi(3770)$	$(-1)^{L+1}$
$2 {}^{1}S_{0} \qquad 0^{-+}$	$\eta_c(2S)$	
$2 {}^{3}S_{1} \qquad 1^{}$	$\psi(2S)$	
$2 {}^{3}P_{0,1,2} 0^{++}, 1^{++}, 2^{++}$		

Charmonium Hybrids

 $V_{c\overline{c}}(r) = -\frac{4/\alpha_s}{2} + br$

 $0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, 3^{-+}...$

Quasi-relativistic systemOGE (one gluon exchange)

Hybrids (qqg,q³g...)
 J^{pc} is forbidden (exotic states) for

Proton ANtiproton annihilation experiment at DArmstadt

electron-positron

proton-antiproton all nonexotic J^{pc}

PANDA for exotic meson

The associated state could have exotic quantum number

How large is the cross section?

The Model of $p\overline{p} \rightarrow \psi \pi^0$

$$\mathcal{M} = ig_{\pi}g_{\Psi}\bar{v}_{\bar{p}\bar{s}}\Big[\Gamma\frac{(\not\!\!p-k\!\!\!/+m)}{(t-m^2)}\gamma_5 + \gamma_5\frac{(k\!\!\!/-p\!\!\!/+m)}{(u-m^2)}\Gamma\Big]u_{ps}$$

two vertex in this diagram

$$g_{p\overline{p}\pi} \approx 13.5$$
 $g_{p\overline{p}\psi} = ?$

Why this model works?

$$\begin{split} \Gamma(\eta_c \to p\bar{p}) &= \alpha_{\eta_c} \beta M/2 \\ \Gamma(J/\psi \to p\bar{p}) &= \alpha_{J/\psi} \beta (1+2/r_{\Psi}^2) M/3 \\ \Gamma(\chi_0 \to p\bar{p}) &= \alpha_{\chi_0} \beta^3 M/2 \\ \Gamma(\chi_1 \to p\bar{p}) &= \alpha_{\chi_1} \beta^3 M/3. \end{split}$$

State Ψ	$B_{\Psi \to p\bar{p}}$	$\Gamma_{\Psi}^{tot.}$ [MeV]	$10^3 \cdot g_{p\bar{p}\Psi}$
η_c	$(1.3 \pm 0.4) \cdot 10^{-3}$	25.5 ± 3.4	19.0 ± 3.2
J/ψ	$(2.17 \pm 0.08) \cdot 10^{-3}$	0.0934 ± 0.0021	1.62 ± 0.03
ψ'	$(2.65 \pm 0.22) \cdot 10^{-4}$	0.337 ± 0.013	0.97 ± 0.04
χ_0	$(2.24 \pm 0.27) \cdot 10^{-4}$	10.4 ± 0.7	5.42 ± 0.37
χ_1	$(6.7 \pm 0.5) \cdot 10^{-5}$	0.89 ± 0.05	1.03 ± 0.07
χ_2	$(6.6 \pm 0.5) \cdot 10^{-5}$	2.06 ± 0.12	_

Cross Section result

• The data points are Fermilab measurements of the cross section for $p\overline{p} \rightarrow \pi^0 J/\psi$

angular distributions

E from 3.2 to 5.0 GeV by 0.2

E from 3.4 to 5.0 GeV by 0.2

Future

polarization predictions
 include baryon resonances
 include ppy form factor
 calculate ppm coupling constant