National Nuclear Physics Summer School 2007

Florida State University, Tallahassee

Josef Juráň

Institute of Physics

Silesian University in Opava

Czech Republic

josef.juran@seznam.cz

Opava, Czech Republic

Opava, Czech Republic

Silesian University in Opava

- founded: 9.7.1991
- students: ~ 5 000
- wide range of fields of study
- three educational units

Silesian University in Opava

- founded: 9.7.1991
- students: ~ 5 000
- wide range of fields of study
- three educational units
- IP: ~ 20 staff, ~ 60 students

School of Business Administration

Faculty of Philosophy and Science

Mathematical Institute

My research

- theory, no experiment
- Ph.D. thesis:
- Some aspects of behaviour of vector mesons in hadronic medium

My research

- theory, no experiment
- Ph.D. thesis:
- Some aspects of behaviour of vector mesons in hadronic medium
- Main fields of my interest:
- many-body decays of vector mesons
- form of Lagrangian of the $a_1 \rho \pi$ interaction
- collisions with three particles in initial state

My current work

Electron-positron annihilation into four charged pions and the $a_1 \rho \pi$ Lagrangian

Peter Lichard

Institute of Physics Silesian University in Opava, Czech Republic and Institute of Experimental and Applied Physics Czech Technical University, Prague

Motivation

- interest in elmag. probes in RHICs
- the production of prompt dileptons and photons
- two sources: (i) quark-gluon plasma, (ii) hadron gas
- DL and photon yield from (ii), not uniquely known $a_1 \rho \pi$ Lagrangian

Motivation

- interest in elmag. probes in RHICs
- the production of prompt dileptons and photons
- two sources: (i) quark-gluon plasma, (ii) hadron gas
- DL and photon yield from (ii), not uniquely known $a_1 \rho \pi$ Lagrangian

- how to reliave this problem
- investigation of the role of the axial-vector $a_1(1260)$ resonance in the processes e+e- --> $\pi + \pi - \pi + \pi$ - and $\rho(770)$ --> $\pi + \pi - \pi + \pi$ -
- controversial situation (ignored or neglected vs. dominant)

Basic idea

- The excitation curves of e+e- annihilation into 4 charged pions
- Using three existing models with ρ `s and π `s in interm. states
- Addition of Feynman diagrams with the $a_1(1260)\pi$ intermediate

states

Basic idea

- The excitation curves of e+e- annihilation into 4 charged pions
- Using three existing models with ρ `s and π `s in interm. states
- Addition of Feynman diagrams with the $a_{_{1}}(1260)\pi$ intermediate states
- A two-term phenomenological $a_{_1}\rho\pi$ Lagrangian with two free parameters
- its determination by requiring:
- \cdot (i) the decay width of $a_1(1260)$ be reproduced
- · (ii) the best possible fitting the e+e- --> π + π - π + π cross section

Feynman diagrams

$$ho^{
m o}$$
 $ightarrow$ π^+ $\pi^ \pi^+$ π^-

(d), 8 diagrams

Technicalities

 $\mathcal{L} = g_{a_1\rho\pi} \left(\cos\theta \mathcal{L}_1 + \sin\theta \mathcal{L}_2\right), \qquad (1)$ where $g_{a_1\rho\pi}$ and θ are yet undetermined parameters,

$$\mathcal{L}_{1} = \mathbf{A}^{\mu} \cdot (\mathbf{V}_{\mu\nu} \times \partial^{\nu} \phi), \qquad (2)$$

$$\mathcal{L}_{2} = \mathbf{V}_{\mu\nu} \cdot (\partial^{\mu} \mathbf{A}^{\nu} \times \phi), \qquad (3)$$

and $\mathbf{V}_{\mu\nu} = \partial_{\mu}\mathbf{V}_{\nu} - \partial_{\nu}\mathbf{V}_{\mu}$.

Technicalities

 $\mathcal{L} = g_{a_1\rho\pi} \left(\cos\theta \mathcal{L}_1 + \sin\theta \mathcal{L}_2\right), \quad (1)$ where $g_{a_1\rho\pi}$ and θ are yet undetermined parameters,

$$\mathcal{L}_{1} = \mathbf{A}^{\mu} \cdot (\mathbf{V}_{\mu\nu} \times \partial^{\nu} \phi), \qquad (2)$$

$$\mathcal{L}_{2} = \mathbf{V}_{\mu\nu} \cdot (\partial^{\mu} \mathbf{A}^{\nu} \times \phi), \qquad (3)$$

and $\mathbf{V}_{\mu\nu} = \partial_{\mu}\mathbf{V}_{\nu} - \partial_{\nu}\mathbf{V}_{\mu}$.

- fixing decay width of $a_1(1260)$: 250, 400, and 600 MeV ($g_{a1\rho\pi}$)
- calculation of decay width of rho(770) into 4 charged pions
- converting decay width to electron-positron cross section
- optimalization of $sin(\Theta)$ by Minuit; GL quadratures; check by MC
- data: CMD-2, BaBar, D/S ratio; low and high energy region

Low - energy results

TABLE I: χ^2 /NDF of the fits to the CMD-2 cross section data (11 data points)

$\Gamma_{a_1}(\mathrm{MeV})$	ESK	PB/HG	AK	only a_1
250	1.60	1.34	1.28	1.68
400	1.53	1.37	1.30	1.82
600	1.61	1.41	1.31	1.94
Only ρ , π	17.6	15.0	14.8	/

TABLE XI: Decay width $\Gamma(\rho^0 \to \pi^+ \pi^- \pi^+ \pi^-)$ (keV) calculated in various models using $\sin \theta$ from the fits to the combined CMD-2 & BaBar data. Experimental value is $(2.8 \pm 1.4 \pm 0.5)$ keV.

$\Gamma_{a_1}(\text{MeV})$	ESK	PB/HG	AK	only a_1
250	4.35	3.41	2.94	4.79
400	2.80	3.62	3.10	5.15
600	1.94	3.79	3.24	5.42
Only ρ , π	16.2	0.59	0.89	/

TABLE VIII: Values of $\sin \theta$ from the fit to the CMD-2 & BaBar data + D/S ratio.

$\Gamma_{a_1}(MeV)$	ESK	PB/HG	AK	only a_1
250	0.4092(33)	0.4278(32)	0.4267(32)	0.4312(35)
400	0.4352(24)	0.4624(34)	0.4608(32)	0.4679(39)
600	0.4659(27)	0.5046(44)	0.5022(41)	0.5132(55)

The optimized values of sin (Θ) squeeze into interval (0.40,0.51).

High - energy results

- fit to BaBar cross section data (up to 4.5 GeV, 144 data points)
 - + D/S ratio
- contribution from higher p-resonances: $\rho' = \rho(1450), \rho'' = \rho(1700)$
- assumption: decay of higher resonances is governed by the same Feynman diagrams
- 10 real parameters to be determined by fitting
- in the following for $\Gamma_{_{a1}}$ = 600 MeV (best results at energies below 1 GeV)

TABLE VII: Results of the fit to the BaBaR cross section data and D/S ratio (145 data points) for $\Gamma_{a_1} = 600$ MeV.

Model	ESK	PB/HG	AK	only $a_1\pi$
χ^2/NDF	1.21	1.12	1.12	1.12
$\sin heta$	0.4474(22)	0.4592(28)	0.4588(27)	0.4603(28)
$\beta ~({\rm GeV})$	0.3505(89)	0.3665(97)	0.3657(97)	0.3695(98)
$m_{\rho'} \; (\text{GeV})$	1.419(12)	1.439(13)	1.438(13)	1.442(13)
$\Gamma_{\rho'}$ (GeV)	0.564(20)	0.568(21)	0.568(21)	0.566(21)
$m_{\rho^{\prime\prime}}$ (GeV)	1.903(21)	1.923(24)	1.922(24)	1.926(24)
$\Gamma_{\rho^{\prime\prime}}$ (GeV)	0.247(38)	0.284(44)	0.283(44)	0.290(45)

Conclusions and comments

- the inclusion of the $a_1\pi$ intermediate states is of vital importance for obtaining a good agreement with the experimental data on the cross section (LE and also HE fits, the same CL) • also pure a_1 -model is good (especially in HE fits)
- adding the diagrams from PB/HG, AK improves fit (no ESK)

Conclusions and comments

- the inclusion of the $a_1\pi$ intermediate states is of vital importance for obtaining a good agreement with the experimental data on the cross section (LE and also HE fits, the same CL) • also pure a_1 -model is good (especially in HE fits)
- adding the diagrams from PB/HG, AK improves fit (no ESK)
- D/S ratio strongly prefers larger value of a_1 decay width
- D/S ratio can discriminate among various models

Conclusions and comments

- the inclusion of the $a_1\pi$ intermediate states is of vital importance for obtaining a good agreement with the experimental data on the cross section (LE and also HE fits, the same CL) • also pure a_1 -model is good (especially in HE fits)
- adding the diagrams from PB/HG, AK improves fit (no ESK)
- D/S ratio strongly prefers larger value of a_1 decay width
- D/S ratio can discriminate among various models
- also the partial decay width of $\rho(770) \rightarrow \pi + \pi \pi + \pi$ is better with inclusion of $a_1\pi$ intermediate states
- all values of decay width are brought into interval given by experimental value and its errors

 \bullet with respect to the $a_1 \rho \pi$ Lagrangian, no clear picture can be inferred from our results yet

No.	$\sin heta$	Reference
1	0	[35, 36]
2	0.2169	[21, 22, 50]
3	0.5582	[55]
4	0.6308	[21, 22, 56]
5	1	[34]
	0.40 - 0.51	our low-energy fits
	0.41 – 0.47	our all-energy fits

 \bullet with respect to the $a_1 \rho \pi$ Lagrangian, no clear picture can be inferred from our results yet

No.	$\sin heta$	Reference
1	0	[35, 36]
2	0.2169	[21, 22, 50]
3	0.5582	[55]
4	0.6308	$[21,\ 22,\ 56]$
5	1	[34]
	0.40 – 0.51	our low-energy fits
	0.41 – 0.47	our all-energy fits

• our failure to obtain more precise value of $sin(\theta)$ suggests that it is necessary to make a simultaneous fit to data about several physical processes (e+e- anihilation into various 4π `s, τ -lepton decay into neutrino and 3 or 4π `s, ...)

Thank you for your attention.