Effective field theories applied to nuclear systems

TRIUMF Theory Group

NNPSS 2007, FSU, Tallahassee, July10, 2007

supported by

 \sim \sim

KC

trshare.triumf.ca/~schwenk/

1. Introduction

2. Effective field theory and the renormalization group for nuclear interactions

3. Three-nucleon interactions: a frontier in nuclear structure

4. Summary and developments

1. Strong interaction physics in the lab and cosmos

QCD Vacuum

X-ray burst

QCD + electroweak interactions

Matter at the extremes: $\rho \sim 10^{11}...10^{15}$ g/cm³ $Z/N \sim 0.05...0.6$, T \sim ...30 MeV

Interaction challenges: $CD \Rightarrow EFT \Rightarrow Low-momentum$ interactions

Many-body challenges: evolution with isospin and asymmetric systems

pairing and superfluidity

impact on the universe, nuclear equation of state in astrophysics

large scattering lengths lead to new phenomena ν physics for supernovae, neutron star cooling ……

Interaction challenges and lattice QCD

Many-body methods

 13 C

 $3/2$; $3/2$

 NN

$A \leq -6$: exact few-body methods

PHYSICAL REVIEW C, VOLUME 64, 044001

Benchmark test calculation of a four-nucleon bound state

In the past, several efficient methods have been developed to solve the Schrödinger equation for fournucleon bound states accurately. These are the Faddeev-Yakubovsky, the coupled-rearrangement-channel Gaussian-basis variational, the stochastic variational, the hyperspherical variational, the Green's function Monte Carlo, the no-core shell model, and the effective interaction hyperspherical harmonic methods. In this article we compare the energy eigenvalue results and some wave function properties using the realistic AV8' NN interaction. The results of all schemes agree very well showing the high accuracy of our present ability to calculate the four-nucleon bound state.

A<~16: imaginary-time evolution GFMC, large basis diagonalizations NCSM

 $A \leq 100$: Shell model with truncations to states of valence N on top of closed shells, Coupled Cluster theory

NN

NN

NN+NNN Exp

NN+NNN Exp

NN+NNN Exp

NN+NNN Exp

NN

all highlight importance of 3N

Towards a universal nuclear density functional

Density functional theory (DFT) for all A, based on densities not wave functions, ~500keV deviation

Hohenberg-Kohn theorem:

from Kohn's 1998 Nobel Prize lecture

I begin with a provocative statement. In general the many-electron wavefunction $\Psi(r_1,...,r_N)$ for a system of N electrons is not a legitimate scientific concept, when $N \geq$ N_0 , where $N_0 \approx 10^3$.

I will use two criteria for defining "legitimacy": a) That Ψ can be calculated with sufficient accuracy and b) can be recorded with sufficient accuracy.

exists energy functional $E[\rho]$, minimized by density of a noninteracting system that yields exact ground-state energy and density

start from interacting fermions in external V_{HO} , turn off interactions and change external V such that density remains that of interacting system, new V is the Kohn-Scham potential of DFT

Challenges: many…… reliable extrapolations connect/constrain to NN and many-N interactions

Large scattering lengths and universal properties

neutron-neutron scattering length $a_{nn} = -18.5 \pm 0.3$ fm

large compared to interaction range $R \sim 1/m_{\pi} \approx 1.4$ fm ω

can imagine tuning quark masses to infinite a_{nn} Beane, Savage (2002)

generate same properties by tuning scattering length of any dilute system to universal regime

 $0 \leftarrow 1/a_s \ll k_F \ll 1/r_e, 1/R, \ldots \rightarrow \infty$ strongly-interacting dilute

only Fermi momentum sets scale, physics independent of interaction details

universal properties of fermionic ⁶Li or ⁴⁰K atoms and extremely low-density neutrons

controlled strong interactions in cold atoms + spin-polarization, m/M or Bose-Fermi mixtures, rotation (vortices), optical lattices,……

scattering length (a)

Nuclear physics dominated by large scattering lengths Low-density neutron matter: EFT for large a_s and r_e AS, Pethick (2005) universal energy $\frac{E}{N} = \xi \left(\frac{E}{N}\right)_{\text{free}} = \xi \frac{3k_F^2}{10m}$ Friedman+Pandharipande (1981) Bao et al. (1994) $V_{low k}$ Hartree-Fock ξ=0.42 for cold atoms, \sim 0.5 for neutron matter E/N [MeV] universal superfluid gap $\Delta \sim \epsilon_{\rm F}$ critical T_c ~0.2-0.3 T_F Thomas et al. (2006) 0.5 0.7 0.6 0.8 **n** Borromean systems $k_{\rm E}$ [fm⁻¹] **9Li n** Many large scattering lengths in nuclear astrophysics:

Physics of supernova neutrinosphere dominated by large scattering lengths temperature T~4 MeV from ~20 SN1987a events density n \sim 10¹¹-10¹² g/cm³ described by virial expansion Horowitz, AS (2006), O'Connor et al. (2007)

n-⁴He $a_{P_{3/2}} = -62.95 \,\mathrm{fm}^3$, ⁴He-⁴He

2. Effective field theory and the renormalization group Resolution scale dependence of nuclear interactions

with high-energy probes: deconfined quarks+gluons cf. scale/scheme dependence of parton distribution functions

Lattice QCD

momenta $Q \sim \lambda^{-1} \sim m_{\pi}$: chiral effective field theory nucleons, interacting with pion exchanges and contact interactions, note typical Fermi momentum in nuclei $k_F \sim m_{\pi}$

 $Q \ll m_{\pi}$ =140 MeV - pion not resolved: pionless effective field theory nucleons and contact interactions

applicable to loosely-bound, dilute systems, reactions at astro energies

Idea of the renormalization group (RG)

integrate out high-momentum modes that are not resolved and incorporate their effects in low-energy couplings

 $Z = \int dx \int dy e^{-S(x,y)} = \int dx \int dy e^{-a(x^2+y^2)-b(x^2+y^2)^2}$ schematically $= \int dx e^{-S_{\text{eff}}(x)} = \int dx e^{-a'x^2 - b'x^4 - c'x^6 + ...}$ separate into slow and fast modes $\phi(\omega, k) = \begin{cases} \phi_{<}(\omega, k) & \text{for } \omega, k < \Lambda \\ \phi_{>}(\omega, k) & \text{else} \end{cases}$ and integrate out fast modes $Z=\int \prod d\phi_<(\omega,k)\, e^{-S_{\rm free}[\phi_<]} \int \prod d\phi_>(\omega,k)\, e^{-S_{\rm free}[\phi_>]-S_{\rm int}[\phi_<,\phi_>]}$ $\delta = \int \prod d\phi_<(\omega,k) \, e^{-S_{\rm eff}[\phi_<]}$

effective action $S_{\text{eff}}[\phi_{\leq}]$ with couplings $g_i(\Lambda)$

when we integrate out momentum modes by $\delta\Lambda$ the couplings evolve $g_i(A-\delta A)=g_i(A)-\frac{\delta A}{A}\beta_i\big(\{g_j(A)\},A\big)$

leads to renormalization group equations $\Lambda \frac{d}{d\Lambda} g_i(\Lambda) = \beta_i({g_j(\Lambda)}, \Lambda)$

Idea of effective field theory (EFT) Separation of scales $\frac{1}{\lambda} = Q \ll A_{\rm b} = \frac{1}{R}$ limited resolution at low energies, $\lambda \gg R$ can expand in powers Q/Λ_b R

details of short-distance physics not resolved, capture in few low-energy constants in effective action, fit couplings to data

include long-range physics explicitly (pions for chiral EFT)

systematic: can work to desired accuracy and obtain error estimates

NN scattering in
$$
\mathcal{L}_{\text{EFT}} = \psi^{\dagger} \left[i \frac{\partial}{\partial t} + \frac{\overline{\nabla}^2}{2m} \right] \psi - \frac{C_0}{2} (\psi^{\dagger} \psi)^2 + \frac{C_2}{16} \left[(\psi \psi)^{\dagger} (\psi \overleftrightarrow{\nabla}^2 \psi) + \text{h.c.} \right]
$$

\npoints EFT,
\ngeneral expansion $+ \frac{C_2'}{8} (\psi \overleftrightarrow{\nabla} \psi)^{\dagger} \cdot (\psi \overleftrightarrow{\nabla} \psi) + \mathcal{O} \left(\frac{\nabla^4}{A_b^4} \right)$ NN P-wave
\nKaplan, Savage, Wise,
\nvan Kolck, Bedaque,
\nHammer, Phillips,
\n $- \frac{D_0}{6} (\psi^{\dagger} \psi)^3 + \mathcal{O} \left(\frac{\nabla^2}{A_b^2} \right)$ 3N S-wave
\nGrieshammer,...
\nwith EFT potential $\langle \mathbf{k} | V_{\text{EFT}} | \mathbf{k}' \rangle = C_0 + \frac{1}{2} C_2 (\mathbf{k}^2 + \mathbf{k'}^2) + C_2' \mathbf{k} \cdot \mathbf{k'} + \mathcal{O} \left(\frac{Q^4}{A_b^4} \right)$

NN scattering in pionless EFT

sum iterated leading-order NN interactions, yields scattering amplitude

sum over intermediate states is divergent, regularize, here with cutoff Λ $I(k,\Lambda) = \int_{0}^{\Lambda} \frac{d^3q}{(2\pi)^3} \frac{1}{k^2 - q^2 + i\epsilon} = \frac{m}{4\pi} \left[\frac{2}{\pi} \Lambda - ik + \mathcal{O}\left(\frac{k^2}{\Lambda^2}\right) \right] + \text{renormalization:}$

match scattering amplitude to low-energy effective range expansion/data $T_0(k) = \frac{C_0(\Lambda)}{1 - I(k, \Lambda) C_0(\Lambda)}$ $T_0(k) = -\frac{4\pi}{m} \frac{1}{k \cot \delta_0(k) - ik} = \frac{4\pi}{m} \frac{1}{\frac{1}{n} - \frac{1}{2}r_e k^2 + ik}$

yields

yects
\n
$$
C_0(A) = \frac{4\pi}{m} \frac{1}{\frac{1}{a_s} - \frac{2}{\pi}A}
$$
\n(i) for weak scattering, can chose $Aa_s \ll 1$ over wide
\ncutoff range \Rightarrow weak-coupling $C_0(A) \approx \frac{4\pi a_s}{m}$
\nwith cutoff-independent.
\n(ii) for $\frac{1}{a_s} = 0$ fine-tuned $C_0(A) = -\frac{2\pi^2}{mA}$
\nlow-energy NN
\n(iii) find $r_e \sim \frac{1}{A}$ implies trunc error $\mathcal{O}\left[\left(\frac{Q^2}{A_b^2}\right), \left(\frac{Q^2}{A^2}\right)\right]$

Lepage plots

Lepage (1997) Log-log plots of relative errors vs. E

steeper slope with subsequent orders, same in all channels: S,P,D,… waves

$$
V(r) = -\alpha_{\pi} v_{\Lambda}(r) + c \frac{\delta_{1/\Lambda}^{3}(r)}{\Lambda^{2}} - d \frac{\nabla^{2} \delta_{1/\Lambda}^{3}(r)}{\Lambda^{4}}
$$

$$
P: \qquad V_{\pi, p} + \frac{\nabla \delta_{1/\Lambda}^{3} \nabla}{\Lambda^{4}} + \mathcal{O}(1/\Lambda^{6})
$$

$$
D: \qquad V_{\pi,D} + \mathcal{O}(1/\Lambda^6)
$$

Cutoff dependence:

truncation errors decrease with increasing cutoff

no advantages for cutoffs >> breakdown scale (nonlinearities)

Pionless EFT applied to the few-body sector

Leading-order NN contact interactions ${}^{1}S_{0}+{}^{3}S_{1}$ C₀(Λ) lead to divergence in triton channel, cutoff dependence generates Phillips line Bedaque et al. (1999)

and band around Tjon line in A=3,4 system Platter et al. (2005)

promote 3N contact interaction $D_0(\Lambda)$ to leading order, coupling fixed by triton energy exhibits RG limit cycle

Three-body force coefficient $H(\Lambda)$ computed analyti-Figure 7 cally (line) and numerically (points) as a function of $log(\Lambda)$ 400 MeV).

Figure 9 Correlation between the doublet S-wave nucleon-deuteron scattering length and the triton binding energy (Phillips line): predictions of different models (points), EFT at LO (light dashed line) and NLO (dark solid line), and experimental value $(cross)$.

Large scattering lengths lead to Efimov effect

LO 2- and 3-body contact interactions:

Efimov spectrum for 3 distinguishable particles or 3 bosons with identical pair-wise scattering lengths

predicts Borromean states: quantum three-body bound states, all two-body subsystems unbound

Universal physics on resonance: infinite bound excited states with scaling $E_n/E_{n+1} = 515$

observed first Efimov resonance in cold atoms by 3-body losses for Cs bosons Kraemer et al. (2006)

predicted Borromean state for three 6Li cold atoms Luu, AS (2007)

Borromean states in nuclei

Recent 11Li results: charge radius (isotope shift), mass still unsettled

NN partial wave analysis and phase shifts

Nijmegen PWA93 (filled circles) http://www.nn-online.org

Fig. 3.3. NN phase shifts in triplet P waves. Shown are predictions using a central

Nuclear interactions

Bethe (1953): "more man-hours … given to this [nuclear force] problem than to any other scientific question in the history of mankind"

Effective theory for NN, many-N interactions, depend on resolution scale

$$
H(\Lambda) = T + V_{NN}(\Lambda) + V_{3N}(\Lambda) + V_{4N}(\Lambda) + \dots
$$

All nuclear interactions are effective interactions

never have "bare" interactions for composite particles, "bare" only useful to specify reference Hamiltonian

Phenomenological hierarchy: $NN > 3N > 4N > ...$

NN: constrained by ~4500 NN data, χ^2 ~1 3N: fit to few-body data, χ^2 ~ poor 4N, …: estimates small

Last 30+ yrs, most accurate calculations with hard NN interactions

Chiral effective field theory for nuclear forces systematic expansion in low-momenta Q over breakdown scale Λ Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Meissner, Nogga, Machleidt,…

Explains pheno hierarchy: $NN > 3N > 4N > ...$

NN-3N, π N, π π, electro-weak,... consistency

 $3N:$ only 2 new couplings to $N³LO!$

used to constrain ν-deuteron breakup reactions for SNO

theoretical error estimates

Difficulties of conventional nuclear interactions due to high momenta, large cutoffs, very small resolution scale

leads to non-perturbative flipped-potential bound states of -λV for small λ , hinder any perturbative expansion, radius of convergence=0

for low-energy physics, can evolve to lower resolution scale, integrate out high-momentum modes using exact RG equation Low-momentum interactions from the Renormalization Group

Evolution to $V_{low k}(\Lambda)$

collapse due to same long-distance pion exchange and fit to same NN data

small differences correlate with fits to data

defines new class of NN interactions

evolution of $V_{low k}(0,0;\Lambda)$ follows contact interaction $c_0(\Lambda)$ at NLO in pionless EFT regime

evolution of chiral EFT interactions to low-momentum beneficial

Advantages of lower cutoffs for nuclear structure

10

5

 Λ =5.0 fm

 $\lambda = 2.0$ fm

tractable in an oscillator basis, direct convergence in few-/many-body calculations

Weinberg eigenvalues

study spectrum of $G_0(z)V|\Psi_\nu(z)\rangle = \eta_\nu(z)|\Psi_\nu(z)\rangle$ at fixed energy z governs convergence $T(z) |\Psi_{\nu}(z)\rangle = (1 + \eta_{\nu}(z) + \eta_{\nu}(z)^2 + ...) V |\Psi_{\nu}(z)\rangle$ can write as Schrödinger eqn $(H_0 + \frac{1}{\eta_{\nu}(z)} V) |\Psi_{\nu}(z)\rangle = z |\Psi_{\nu}(z)\rangle$

Repulsive core eigenvalues small for lower cutoffs, Born series always nonperturbative for interactions with cores

Bogner, AS, Furnstahl, Nogga (2005)

2-body nonperturbative at low energies due to near-bound states, in nuclear matter Pauli blocks low energies \Rightarrow deuteron eigenvalue small

Correlations ???

RG preserves long-range parts of interactions, deuteron observables, with dramatically different wave functions/correlations

Few-nucleon systems Nogga, Bogner, AS (2004)

 $V_{low k}(\Lambda)$ defines class of NN interactions with cutoff-independent NN observables

cutoff variation estimates errors due to neglected parts in $H(\Lambda)$

Cutoff dependence explains Tjon line due to neglected 3N interactions, 3N required by renormalization

Experiment breaks from lines

Coester line in nuclear matter Coester et al. (1970) from Baldo et al. (2003)

Hagen, AS, in prep.

3. Three-nucleon interactions: a frontier in nuclear structure Effect of 3N interactions are amplified in nuclei, constrain 3N with few- and many-body data \Rightarrow controlled predictions

3N interaction crucial:

for range of cutoffs, linear dependences in fits

3N interactions perturbative for $\Lambda \leq 2 \,\mathrm{fm}^{-1}$ Nogga, Bogner, AS (2004)

nonperturbative at larger cutoffs, cf. chiral EFT $\Lambda \approx 3$ fm⁻¹

3N expectation values natural $\sim (Q/\Lambda)^3$ V_{NN}

Radii and light nuclei

 $V_{low k}(\Lambda)$ + leading chiral $V_{3N}(\Lambda)$ interaction

Cutoff dependence of observables probes neglected many-body int.

Radii with 3N interaction approx. cutoff-independent, agree with exp.

Can provide lower limits on theoretical errors

long-term:

important for nuclear matrix elements needed in fundamental symmetry tests

Towards 3N interactions in medium-mass nuclei based on low-momentum $V_{low k}(\Lambda) + V_{3N}(\Lambda)$ ⁻²²[4He -23 Hagen et al., arXiv:0704.2854. developed coupled-cluster theory with $\texttt{E}_{\texttt{CCSD(T)}}\left(\texttt{MeV}\right)$ -24 3N interactions, first benchmark for 4He -25 -26 Results show that 0-, 1- and 2-body parts -27^Eextrapolated: -28.23MeV of 3N interaction dominate exact, FY: -28.20(5)MeV $-28\overline{5}$ residual 3N interaction can be neglected! N \bullet 2-body only $10⁰$ very promising $\frac{1}{\Delta E}$ / $\frac{1}{2}$ 10⁻³ 0-body 3NF supports: "monopole" -body 3NF $T=1$ -0.5 corrections for SM $V(ab;T)$ (MeV) estimated triples corrections interactions due to 3N $\frac{1}{2}$ -body 3NF 10^{-3} residual 3Nl 10 -2.5 (1) (2) (3) (4) (5) $f7f7$ $f7p3$ $f7f5$ $f7p1$ p3p3

Bogner, AS, Furnstahl, Nogga (2005)

3N drives saturation but expectation values natural, consistent with EFT

will provide key guidance to microscopic DFT for \bigoplus SciDA

4. Summary and many on-going developments Exciting era with advances on many fronts!

NCSM, CC calculations in progress

3N contributions to shell model Jason Holt

new power counting for nuclear matter

microscopic guidance for DFT Bogner, Furnstahl, Platter et al. constructing microscopic interactions for HF+GCM+… Rotival, Duguet et al.

superfluidity in neutron stars Hebeler et al.

……

finite temperature equation of state for supernovae, neutron-star mergers Tolos, Friman, AS (2006)

