The Nuclear Equation of **State**

Abhishek Mukherjee University of Illinois at Urbana-Champaign

Work done with : Vijay Pandharipande, Gordon Baym, Geoff Ravenhall, Jaime Morales and Bob Wiringa

National Nuclear Physics Summer School 2007

Outline

- [EOS of Hot Dense Matter](#page-2-0)
- [Variational Theory for Finite T EOS](#page-5-0)
- [The Hamiltonian](#page-12-0)
- **[Results](#page-16-0)**
- **[Conclusions](#page-24-0)**

Nuclear Matter

Infinite Matter with Neutrons + Protons only

- *Symmetric Nuclear Matter* Equal Number of Neutrons and Protons
- *Pure Neutron Matter* Neutrons only
- • *Asymmetric Nuclear Matter* Unequal number of neutrons and protons

Why is the EOS interesting/useful ?

- \blacktriangleright Supernova evolution
- \triangleright Cooling of Neutron Stars

- \blacktriangleright Heavy Ion Collisions
- \triangleright Novel Many Body Systems

Challenges for a microscopic theory:

- 1. Include correlations beyond mean field
- 2. Good description of the excited states (for $T \neq 0$)
- 3. Calculate the energy, *E*(ρ, *T*) **accurately**
- 4. Calculate the entropy, *S*(ρ, *T*) **accurately**

Correlated Basis States

Landau Fermi Liquid Theory

Correlated Basis States (CBS) $|\Psi_I\rangle = | \mathbf{CBS}) = \frac{\mathcal{G} \left[\mathbf{FGS} \right]}{ \left[\mathbf{FGS} \left| \mathcal{G}^\dagger\mathcal{G} \right| \mathbf{FGS} \right]}$

Correlation Operator

$$
\mathcal{G} = \mathcal{S} \prod_{i < j} \mathcal{F}(\mathbf{r}_{ij})
$$

- \triangleright Generalization of Jastrow method of pair correlation functions
- \triangleright Correlations are included in the functions $\mathcal{F}(\mathbf{r}_{ij})$

$$
\begin{pmatrix} (\Psi_I|H|\Psi_I) & \longrightarrow \text{VCS (FHNC/SOC)} \end{pmatrix}
$$

$$
\begin{vmatrix} (\Psi_I|H|\Psi_J) & \longrightarrow \text{No such method} \end{vmatrix}
$$

Gibbs-Bogoliubov variational principle for $T \neq 0$

$$
F\leq F_V\equiv \text{Tr}(\rho_V H)+T \text{Tr}\rho_V \text{ln}\rho_V.
$$

F^V is an approximation for *F*

Analogy : Rayleigh-Ritz variational principle for $T = 0$ *E*₀ < (Φ₀| *H* |Φ₀)

e.g. the Akmal-Pandharipande-Ravenhall EOS Phys. Rev. C 58, 1804(1998)

What we want to do

Variational 'Hamiltonian'

$$
H_{V}|\Psi_{I})=E_{V}'|\Psi_{I})=\sum_{k}\epsilon_{T}(k)n_{I}(k)|\Psi_{I})
$$

Variational density matrix

$$
\rho_V(T) \propto e^{-H_V/T} = e^{-E_V^I/T} |\Psi_I\rangle (\Psi_I|
$$

$$
S_V(T) = -\sum_{k} (\bar{n}(k) \ln \bar{n}(k) + (1 - \bar{n}(k)) \ln(1 - \bar{n}(k)))
$$

Tr $(\rho_V H) = \frac{1}{\sum_{l} e^{-E_V^l/T}} \sum_{l} e^{-E_V^l/T} (\Psi_l | H | \Psi_l)$

The Orthogonality Problem

The Correlated basis states are not **Orthonormal** to each other

 $|\Psi_I\rangle(CBS) \longrightarrow |\Theta_I\rangle \equiv$ Orthonormal Correlated Basis States (OCBS)

$$
H_{V}|\Theta_{I}\rangle=E_{V}'|\Theta_{I}\rangle=\sum_{k}\epsilon_{T}(k)n_{I}(k)|\Theta_{I}\rangle
$$

$$
\operatorname{Tr} (\rho_V H) = \frac{1}{\sum_l e^{-E'_V/T}} \sum_i e^{-E'_V/T} [(\Psi_i | H | \Psi_i) + \Delta E_l]
$$

∆**E^I** (**Orthogonality Corrections**) −→ (Ψ*^I* |*H*|Ψ*^J*), *non diagonal* matrix elements

Our Solution

 \triangleright Microcanonical ensemble instead of a canonical ensemble

$$
\rho_V^{MC}=\frac{1}{\mathcal{N}_{\mathcal{M}}}\sum_l|\Theta_l\rangle\langle\Theta_l|
$$

 $M(T)$ \equiv the microcanonical ensemble at temperature T $\mathcal{N}_{\mathcal{M}} = \#$ of elements in \mathcal{M}

▶ Mixed orthonormalization procedure (Lówdin + Gram-Schmidt).

∆**E^I** (**Orthogonality Corrections**) −→ 0

Details: A. Mukherjee and V.R. Pandharipande , Phys. Rev. C **75**, 035802 (2007)

The Hamiltonian

$$
H=\sum_i -\frac{\hbar^2\nabla^2}{2m}+\sum_{i
$$

$$
\blacktriangleright v_{ij} = NN
$$
 potential (Argonne v18)

- V_{ijk} = NNN potential (Urbana IX)
- $\triangleright \delta v_{ij}$ = Relativistic Boost Corrections

Argonne *v*18

A*v*18 = Long Range Part + Intermediate Range Part + Short Range Part

• Long Range Part ∼ One Pion Exchange Potential

Intermediate Range Part : Motivated by Meson Exchange **Theory**

 \triangleright Short Range Part : Phenomenological

Urbana IX and Relativistic Boost Corrections

Urbana IX

- \triangleright UIX = Two Pion Exchange + Phenomelogical Repulsion
- \triangleright Fits Binding Energy of Light nuclei + Binding of nuclear matter at saturation

Urbana IX and Relativistic Boost Corrections

Urbana IX

- \triangleright UIX = Two Pion Exchange + Phenomelogical Repulsion
- \triangleright Fits Binding Energy of Light nuclei + Binding of nuclear matter at saturation

Relativistic Boost Corrections

 \blacktriangleright Leading order corrections due to Special Relativity

 \blacktriangleright The (temperature and density dependent) eigenvalue spectrum of H_V is an additional 'parameter' to be varied.

$$
E'_{v} = \sum_{k} \epsilon_{\mathcal{T}}(k) \bar{n}(k)
$$

Effective mass approximation

$$
\epsilon_{\mathcal{T}}(k) = \frac{\mathbf{k}^2}{2m^*(\rho, T)} + U(\rho, T)
$$

- \triangleright Minimize the energy of the two body cluster at finite temperature
- \blacktriangleright Long range part of the wavefunctions constrained by the model (uncorrelated) wavefunction

Euler-Lagrange equations \rightarrow Correlation functions(\mathcal{F})

 \triangleright F has variational parameters : 2 correlation lengths (d_c, d_t) , spin-isospin quenching parameter (α) and the effective mass (*m*[∗])

Abhishek Mukherjee: [Nuclear EOS,](#page-0-0) 19

Pion Condensation

- $\blacktriangleright \pi_s^0$ condensation = Softening of the spin-isospin sound mode (same quantum number as a pion)
- \blacktriangleright Pions are absorbed in the NN interaction
- \triangleright Pionic modes \sim Tensor interactions Pion condensation \implies enhancement of the tensor correlations *dt* increases dramatically in the HDP

Abhishek Mukherjee: [Nuclear EOS,](#page-0-0) 23

[Conclusions](#page-24-0)

- \triangleright The method of correlated basis functions which has in the past been successfully applied to study the ground state of dense strongly interacting systems has been extended to study the thermodynamics and response at finite temperature.
- \triangleright An EOS for nuclear matter at low and moderate temperatures is being developed.
- In future the influence of thermal pions at very high temperature and pairing at low densities will be examined.

Correlated Basis States

Correlation operator

$$
\mathcal{G} = \mathcal{S} \prod_{i < j} \mathcal{F}_{ij}
$$

 F_{ij} contains the same operators as the NN interaction. Generalization of the Jastrow correlation functions. Correlated Basis States (CBS)

$$
|\Psi_I\rangle = \frac{\mathcal{G}|\Phi_I\rangle}{\sqrt{\langle \Phi_I | \mathcal{G}^\dagger \mathcal{G} | \Phi_I \rangle}}
$$

The CBS are not orthogonal to each other

|Φ*I*) (CBS) orthonormalization −→ |Θ*I*ⁱ (OCBS)

OCBS = Orthonormalized Correlated Basis States

hΘ*^I* |*H*|Θ*I*i = (Φ*^I* | *H* |Φ*I*) + **Orthogonality Corrections**

Variational Hamiltonian

$$
H_V|\Theta_I\{n_I(\mathbf{k},\sigma_z)\}\rangle = \left[\sum_{\mathbf{k},\sigma_z} n_I(\mathbf{k},\sigma_z)\epsilon_V(\mathbf{k},\sigma_z)\right]|\Theta_I\{n_I(\mathbf{k},\sigma_z)\}\rangle,
$$

= $E_I^V|\Theta_I\{n_I(\mathbf{k},\sigma_z)\}\rangle$

For present Calculations:

$$
\epsilon_V = \frac{\hbar^2 k^2}{2m^*(\rho, T)} + \text{constant}
$$

We define

$$
\rho_V = \frac{1}{\mathcal{N}_{\mathcal{M}}} \sum_{I \in \mathcal{M}} |\Theta_I\rangle \langle \Theta_I|
$$

 $M =$ Microcaninical ensemble of the Variational Hamiltonian H_V

$$
F_V = \frac{1}{N_{\mathcal{M}}} \sum_{l \in \mathcal{M}} \frac{(\Psi_l | H | \Psi_l)}{(\Psi_l | H | \Psi_l)} + \text{Orthogonality Corrections} - TS_V(T)
$$

Vanishing Orthogonality corrections

We showed that Orthogonality Corrections \rightarrow , in the thermodynamic limit.

$$
F_V = \frac{1}{N_{\mathcal{M}}} \sum_{l \in \mathcal{M}} (\Psi_l | H | \Psi_l) - T S_V(T)
$$

First Term : Variational Chain Summation = Fermi Hypernetted Chain summation + Single Operator Chain summation Second Term : Trivial