# National Nuclear Physics Summer School



Neutrino Physics Lecture II July 17, 2007

Stuart Freedman Berkeley

$$Essentials of Neutrino Oscillations$$

$$m_{2}C^{2}$$

$$|v_{e}\rangle = |\psi_{v_{e}}(0)\rangle = \cos\theta |v_{1}\rangle + \sin\theta |v_{2}\rangle$$

$$m_{I}C^{2}$$

$$|\psi_{v_{e}}(t)\rangle = \cos\theta e^{-\frac{im_{1}c^{2}t}{\hbar}} |v_{1}\rangle + \sin\theta e^{-\frac{im_{2}c^{2}t}{\hbar}} |v_{2}\rangle$$

$$P_{ee}(t) = |\langle\psi_{v_{e}}(0)|\psi_{v_{e}}(t)\rangle|^{2} = \left|\cos^{2}\theta e^{-\frac{im_{1}c^{2}t}{\hbar}} + \sin^{2}\theta e^{-\frac{im_{2}c^{2}t}{\hbar}}\right|^{2}$$

$$P_{ee}(t) = 1 - \sin^{2}2\theta \sin^{2}(\frac{(m_{2}-m_{1})c^{2}}{2\hbar}t)$$

$$t = \frac{t_{lab}}{\gamma} \approx \frac{L}{\gamma c} \qquad \gamma = \frac{E}{mc^{2}} \qquad m = \frac{m_{1}+m_{2}}{2}$$

$$P_{ee}(L) = 1 - \sin^{2}2\theta \sin^{2}(\frac{(m_{2}^{2}-m_{1}^{2})c^{4}}{4\hbar c}\frac{L}{E})$$

$$P_{ee}(L) = 1 - \sin^{2}2\theta \sin^{2}(1.27\Delta m^{2}\frac{L}{E})$$

$$F_{ee}(L) = 1 - \sin^{2}2\theta \sin^{2}(1.27\Delta m^{2}\frac{L}{E})$$

## Neutrino Oscillations



## Neutrino Oscillation Experiments

Appearance Experiments:



Produce one Flavor -- Look for another  $P_{\mu e}(t) = \sin^2 2\theta \sin^2(1.27\Delta m^2 \frac{L}{E})$ 

**Disappearance** *Experiments*:



Detector



Produce and detect the same flavor --Look a discrepancy from 1/R<sup>2</sup>

$$P_{ee}(t) = 1 - \sin^2 2\theta \sin^2(1.27\Delta m^2 \frac{L}{E})$$

# Where do the neutrinos come from?





Nuclear Burning  $4 p \rightarrow {}^{4}He + 2e^{+} + 2v_{e}$ proton <sup>4</sup>He



 $4p + 2e^{-} \rightarrow ^{4}He + 2v_{e} + 26.73MeV - E_{v}$  $\langle E_{v} \rangle \sim 0.6 MeV$ 

UNIT

For Neutrino Detectors:

rate =  $\sum$ (flux) × (cross section)  $\sim 10^{10} \text{ cm}^{-2} \text{s}^{-1} \times 10^{-46} \text{ cm}^{2}$ 

 $1 SNU = 10^{-36}$  interactions per target

ATOM PER SEC











### Pioneering venture in Neutrino Physics

 $v_e + {}^{37}Cl \rightarrow {}^{37}Ar + e^{-1}$  $^{37}Ar + e^{-} \rightarrow ^{37}Cl^* + v_e$ 



### **Ray Davis**

# Plan of Davis Experiment



Figure 2.3. Schematic drawing of the argon recovery system. The pump-eductor system forces helium gas through the tetrachloroethylene liquid and provides the helium gas flow through the argon collection system.







#### Russian SAGE - Soviet American Gallium Experiment





# Ring-imaging water Cherenkov Detectors



# KamiokaNDE



 $v_e$  e  $v_{e,\mu,\tau}$   $v_{e,\mu,\tau}$  $w_{e,\mu,\tau}$   $v_{e,\mu,\tau}$ e  $v_e$  e e e

IMB



**Probably**  $\mu^+ \rightarrow e^+ + v_e + \overline{v}_{\mu}$ 











Total Rates: Standard Model vs. Experimen



50,000 ton Water Cherenkov Detector 11,200 20" PMTs

crane

20" PMTs

anti - layer

electronics hut

PMT support





# Vacuum Oscillations

$$i\hbar \frac{d}{dt} \begin{bmatrix} \mathbf{v}_e \\ \mathbf{v}_x \end{bmatrix} = H \begin{bmatrix} \mathbf{v}_e \\ \mathbf{v}_x \end{bmatrix}$$

$$H = \begin{bmatrix} \frac{\Delta m^2}{4E} \cos 2\theta & \frac{\Delta m^2}{4E} \sin 2\theta \\ \frac{\Delta m^2}{4E} \sin 2\theta & -\frac{\Delta m^2}{4E} \cos 2\theta \end{bmatrix}$$

$$P(v_e \rightarrow v_x) = \sin^2 2\theta \sin^2 \left(\frac{1.27\Delta m^2 L}{E}\right)$$

$$\Delta m_{ij}^2 \equiv (m_i^2 - m_j^2)$$











2/3 of initial solar  $\nu_{\rm e}$  are observed at SNO to be  $\nu_{\mu,\tau}$ 

## Recent results from SNO





#### Atmospheric Neutrino Anomaly





## SuperKamiokaNDE detector



#### 50,000 ton water Cherenkov detector







#### The SuperKamiokande Light-Water Cherenkov Detector







#### Reactor Neutrino Experiments



M. Appollonio, hep-ex/0301017




#### 20 % of world nuclear power



3.2 ton water veto











## 2004 Data Set

## Is the Neutrino Spectrum Distorted?



# <sup>8</sup>He/<sup>9</sup>Li Background



## Looking for the oscillation effect

$$\left|\left\langle \psi_{v_{e}}(t) \left| \psi_{v_{e}}(0) \right\rangle \right|^{2} = 1 - \sin^{2}(2\theta) \sin^{2}(\frac{(m_{2} - m_{1})c^{2}}{2\hbar}t)$$

$$P_{ee}(L) = 1 - \sin^2(2\theta)\sin^2(1.27\frac{(m_2^2 - m_1^2)L}{E})$$

$$L = c \bullet t_{lab}$$
  $t_{restframe} = \frac{t_{lab}}{\gamma} = \frac{m}{E} t_{lab}$ 



## Observing the oscillations in the neutrino rest frame



## **Do 'sterile' neutrinos exist?**



## MiniBooNE



## Experiment capable of confirming LSND





MiniBooNE

- 1 GeV neutrinos (Booster)
- 800 ton oil cerenkov
- Operating since 2003
- $v_{\mu}$  ->  $v_{e}$  appearance

#### The MiniBooNE Detector



- 541 meters downstream of target
- 3 meter overburden
- •12 meter diameter sphere
  - (10 meter "fiducial" volume)
  - Filled with 800 t
    - of pure mineral oil (CH<sub>2</sub>)
    - (Fiducial volume: 450 t)
  - 1280 inner phototubes,
     240 veto phototubes
  - Simulated with a GEANT3 Monte Carlo

Events producing pions



## CCπ+

Easy to tag due to 3 subevents. Not a substantial background to the oscillation analysis.



(also decays to a single photon with 0.56% probability)

#### NCπ<sup>0</sup>

The  $\pi^0$  decays to 2 photons, which can look "electron-like" mimicking the signal...

> <1% of π<sup>0</sup> contribute to background.

The types of particles these events produce:

## Muons: Produced in most CC events. Usually 2 subevent or exiting.

```
Electrons:
Tag for ν<sub>µ</sub>→ν<sub>e</sub> CCQE signal.
1 subevent
```

## $\pi^0$ s:

Can form a background if one photon is weak or exits tank. In NC case, 1 subevent.



Track Based energy dependent fit results: Data are in good agreement with background prediction.



Best Fit (dashed):  $(\sin^2 2\theta, \Delta m^2) = (0.001, 4 \text{ eV}^2)$ 

## The result of the $\nu_{\mu} \rightarrow \nu_{e}$ appearance-only analysis is a <u>limit</u> on oscillations:



Energy fit:  $475 < E_v^{QE} < 3000 \text{ MeV}$ 





# Study of $v_{\mu} \rightarrow v_{\tau}$ oscillation in K2K

Hep-ex/0606032

## Based on Number of events + Spectrum shape



## MINOS experiment at Fermilab



## **MINOS** detector

- 8m octagonal tracking calorimeter
- 484 layers of 2.54 cm Fe plates
- 4.1 cm-wide scintillator strips with WLS fiber readout, read out from both ends
- 8 fibers summed on each PMT pixel; 16 pixels/PMT
- 25,800 m<sup>2</sup> of active detector planes
- Toroidal magnetic field
   <B> = 1.3 T
- Total mass 5.4 kT



# **MINOS Best-Fit Spectrum**







# The near future

# Neutrino mixing matrix

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{13} & 0 & e^{-i\delta_{CP}} \sin\theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{CP}} \sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha/2} & 0 \\ 0 & 0 & e^{i\alpha/2+i\beta} \end{pmatrix}$$

$$\theta_{23} = (45 \pm 7)^{\circ} \qquad \theta_{13} < 13^{\circ} \qquad \theta_{12} = (33.9^{+2.4}_{-2.2})^{\circ} \qquad \alpha = ?$$

$$\delta = ? \qquad \beta = ?$$

## Hierarchy Problem:



# Measuring $\theta_{13}$

Method 1: Accelerator Experiments  $P_{\mu e} \approx \sin^2 2\theta_{13} \sin^2 2\theta_{23} \sin^2 \frac{\Delta m_{31}^2 L}{4E_{...}} + ...$ 

- appearance experiment  $v_{\mu} \rightarrow v_{e}$
- measurement of  $v_{\mu} \rightarrow v_{e}$  and  $\overline{v_{\mu}} \rightarrow \overline{v_{e}}$  yields  $\theta_{13}, \delta_{CP}$
- baseline O(100 -1000 km), matter effects present

#### Method 2: Reactor Neutrino Oscillation Experiment

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v}\right)$$

- disappearance experiment  $\overline{v_e} \rightarrow \overline{v_e}$
- look for rate deviations from 1/r<sup>2</sup> and spectral distortions
- observation of oscillation signature with 2 or multiple detectors
- baseline O(1 km), no matter effects





# Measuring $\theta_{13}$ with Reactor Antineutrinos

Precision Oscillation Measurement as a Function of Distance from Source



Projected sensitivity:  $\sin^2 2\theta_{13} \approx 0.01$ 

underground scintillator  $\overline{\nu}$  detectors, ~40-120t

# <complex-block>

$$\begin{split} R_{1aA} &= \frac{F_A}{4\pi L_a^2} \varepsilon_1 (1 - \delta_a) \\ &\frac{R_{1aA}}{R_{2bA}} \frac{R_{2aB}}{R_{1bB}} = \frac{L_b^4}{L_a^4} \frac{(1 - \delta_a)^2}{(1 - \delta_b)^2} \approx \frac{L_b^4}{L_a^4} \left[ 1 - 2(\delta_a - \delta_b) \right] \\ &(\delta_a - \delta_b) \approx \sin^2 (2\theta_{13}) \left[ \sin^2 (1.27 \frac{\Delta m_{13}^2 L_a}{E}) - \sin^2 (1.27 \frac{\Delta m_{13}^2 L_b}{E}) \right] \end{split}$$



## Proposals to Measure $\theta_{13}$ with Reactor Neutrinos







# Near future LBL $\theta_{13}$ experiments

T<sub>2</sub>K



Detector need to be

constructed

• Similar time scale

Acc/beamline under construction Far detector ready

Super-Kamiokande

295 km

**J-PARC** 

KEK


## Three-neutrino oscillations



## Neutrino Mass





## Status of J-PARC construction

→ Buildings for LINAC and 3GeV PS finished. →50GeV PS under construction Acceleration of protons at LINAC successful (Nov.2006) → First beam on 50GeV PS in 2008 (First neutrino beam in 2009.)

February, 2006

Linac





