

National Nuclear Physics Summer School 2007 The Florida State University July 8th - 21st

The Physics with Polarized Protons at RHIC (The RHIC Spin Program)

Abhay Deshpande Stony Brook University RIKEN BNL Research Center NNPSS 2007, July 12, 2007

The plan of this talk....

- Nucleon structure including its' spin in the last century
 - Special requirements in "spin" related experiments
- RHIC spin program: this decade
 - Motivation, the technique, advantages and disadvantages
 - Accelerator status and progress
 - Brief overview of Experiments
 - Where we are in terms of the program: Recent results
- A few concluding remarks:
 - Outlook: short and long term...

Nucleon Structure & Spin 1901 - 2000

What did we know? When did we know it? How did we know it?

The early years...

- Geiger, Marsden and Rutherford 1909
 - Demonstrate the existence of the Nucleus inside the atom
 - Later found to be composed of neutrons and protons!

• Do neutrons and protons also have a sub-structure? What binds stuff together?

Spin: the golden years!

- 1925, the spinning electron (Goudsmit and Uhlenbeck)
 - Intrinsic angular momentum: ħ/2
 - Magnetic Moment:

$$\overline{\mu} = -\frac{2e\hbar}{mc}\vec{s}$$

- 1927 proton has spin 1/2 (Dennison and Heisenberg)
- 1933 the magnetic moment of the proton measured (Stern)

$$\overline{\mu} = -\frac{2e\hbar}{mc}\vec{s} \times 2.79$$

– The protons must have an internal structure.... NOT POINT LIKE!

A simple Standard Model to a Particle Zoo!

New experiments being performed, higher and higher energies reached, detector technologies being developed....

"When the Nobel prizes were first awarded in 1901, physicists know something of just two objects which are now called "elementary particles": the electrons and the proton. A deluge of other "elementary" particles appeared after 1930s; neutron, neutrino, μ meson, π meson, heavier mesons, and various hyperons. I have heard it said that the finder of a new elementary particle used to be awarded with a Nobel Prize, but such a discovery <u>now</u> ought to be punishable by a \$10,000 fine"

Lamb, Nobel lecture 1955

Was there a method behind this madness?

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M. GELL-MANN

California Institute of Technology, Pasadena, California

Received 4 January 1964

It is fun to speculate about the way quarks would behave if they were physical particles of finite mass

instead of purely mathematical entities

• SU(3) Representations of u,d,s quarks (Gell-Mann, Zweig)

Success?

- Explains the large anomalous magnetic moment!
- Explained the spin of the proton simply to be originating from the quark's spin....

$$+1e = \frac{2}{3}e + \frac{2}{3}e + \frac{-1}{3}e$$

$$PROTON CHARGE$$

 $\frac{1}{2} = +\frac{1}{2} + \frac{1}{2} + \frac{-1}{2}$ PROTON SPIN!

Similarly for Neutrons!

The RHIC Spin Program @ BNL, NNPSS 2007

Deep Inelastic Scattering...

- Electron a "point" structure-less particle
- Exchanges a virtual photon ... momentum transferred Q^2 (GeV²)
 - Resolution scale: $\lambda \approx \frac{\hbar}{Q^2}$ Resolves the structure of the proton!
- First tried at SLAC and revealed the internal structure of protons! (Taylor et al.)

Amazing revelation...

- Rutherford's experiment at a very high energy scale reveals the internal structure of the proton!
- No wonder then that the magnetic moment of the proton was 2.79 times higher than a point like fermion!

What about the spin?

For this we need to perform an experiment with spin polarized target and beams! <u>Polarized</u> Deep Inelastic Scattering

First at SLAC, then at CERN, DESY and now also at Jefferson Laboratory

Polarized Cross Section & Spin SFs

• Lepton Nucleon Cross Section:

$$\frac{d^{3}\sigma}{dxdyd\phi} = \frac{\alpha^{2}y}{2Q^{4}}L_{\mu\nu}(k,q,s,)W^{\mu\nu}(P,q,S)$$
Nucleon spin
Lepton spin

- Lepton tensor $L_{\mu\nu}$ controls the kinematics (QED)
- Hadronic tensor $W^{\mu\nu}$ nucleon structure

$$W^{\mu\nu}(P,q,S) = -(g^{\mu\nu} - \frac{q^{\mu}q^{\nu}}{q^2})F_1(x,Q^2) + (p^{\mu} - \frac{P \cdot q}{q^2}q^{\mu})(p^{\nu} - \frac{P \cdot q}{q^2}q^{\nu})\frac{1}{P \cdot q}F_2(x,Q^2)$$
$$-i\epsilon^{\mu\nu\lambda\sigma}q_{\lambda}\left[\frac{MS_{\sigma}}{P \cdot q}(g_1(x,Q^2) + g_2(x,Q^2)) - \frac{M(S \cdot q)P_1}{P \cdot q}(g_2(x,Q^2))\right]$$

Structure Functions & PDFs

- The F_1 and F_2 are unpolarized structure functions or momentum distributions
- The g₁ and g₂ are polarized structure functions or spin distributions
- In QPM
 - $F_2(x) = 2xF_1$ (Calan-Gross relation)
 - $-g_2 = 0$ (Twist 3 quark gluon correlations)

$$F_1(x) = \frac{1}{2} \sum_f e_f^2 \{q_f^+(x) + q_f^-(x)\} = \frac{1}{2} \sum_f e_f^2 q_f(x)$$
$$g_1(x) = \frac{1}{2} \sum_f e_f^2 \{q_f^+(x) - q_f^-(x)\} = \frac{1}{2} \sum_f e_f^2 \Delta q_f(x)$$

Nucleon spin & Quark Probabilities

• Define
$$\Delta q = q^+ - q^-$$

 With q⁺ and q⁻ probabilities of quark & anti-quark with spin parallel and anti-parallel to the nucleon spin

• Total quark contribution then can be written as:

$$\Delta \Sigma = \Delta u + \Delta d + \Delta s$$

• And the proton spin then becomes:

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_G$$

First Moments of SPIN SFs

• With
$$\Delta q = \int \Delta q(x) dx$$

$$\Gamma_1^p = \frac{1}{2} \left[\frac{4}{9} \Delta u + \frac{1}{9} \Delta d + \frac{1}{9} \Delta s \right]$$

$$= \frac{1}{12}(\Delta u - \Delta d) + \frac{1}{36}(\Delta u + \Delta d - 2\Delta s) + \frac{1}{9}(\Delta u + \Delta d + \Delta s)$$

a₃=g_a
Neutron decay
Hyperon Decay

$$\Gamma_1^{p,n} = \frac{1}{12} \left[\pm a_3 + \frac{1}{\sqrt{3}} a_8 \right] + \frac{1}{9} a_0$$

The experimental method and surprises!

How is Quark Spin measured?

• Deep Inelastic polarized electron or muon scattering

Inclusive DIS: only measure the scattered electron Semi-Inclusive DIS: Inclusive + Current Jet remnants Exclusive DIS: Semi-Inclusive + Target Jet remnants

Example of DIS kinematic Reach

- CERN experiment with muon beam 160 GeV/c
- Plot of Q^2 vs. x
- Lines of constant y and W shown
- Blue line indicates an "adhoc" limit of Q² > 1 GeV² or DIS
- <u>For Spin Sum Rule</u> <u>Verification:</u> <u>measurements over a</u> <u>large x range and</u> <u>constant and high Q²</u> <u>value</u>

Experimental Needs

Polarized target, polarized beam

- Up to very recent times only fixed target polarized DIS experiments
- Polarized target: hydrogen(proton), deuteron (proton+neutron), Helium (2 protons + neutron)
- Polarized beams: electron, positron, muon used in DIS experiments

Determine the kinematics: measure with high accuracy:

- Energy of **incoming lepton**
- Energy, direction of scattered lepton: energy, direction
- Good identification of scattered lepton
- In case of semi-inclusive and exclusive extend this to current and jet fragments including particle identification

Control of false asymmetries:

• Need excellent understanding and control of **false asymmetries** (time variation of the detector efficiency etc.)

A better polarized DIS experiment setup

• Typical Fixed target experiment setup (EMC, SMC, *COMPASS*)

- Target polarization direction reversed every 6-8 hrs
- Typically experiments try to limit false asymmetries to be about 10 times smaller than the physics asymmetry of interest

Proton Spin Crisis (1989)!

Quarks Don't Carry the Proton the Spin "1/2" $\Delta \Sigma = (0.12) + / - (0.17) (EMC, 1989)$

How significant is this?

"This could be the discovery of the century. Depending, of course, on how far down it goes." This could be the discovery of the century! Depending of course, on how far down it goes.

F₂ and un-polarized gluon distribution G from HERA

 d^2

Deep Inelastic Scattering:

$$\frac{d\sigma^{ep \to eX}}{dxdQ^2} = \frac{4\pi\alpha_{e.m.}^2}{xQ^4} \left[\left(1 - y + \frac{y^2}{2}\right) F_2(x,Q^2) - \frac{y^2}{2} F_L(x,Q^2) \right]$$

• Scaling violation: $dF_2/dlnQ^2$ and linear DGLAP Evolution $\Rightarrow G(x,Q^2)$

CERN established the existence of gluons, HERA measured them with precision.... And established unequivocally that they play a central role in the proton's internal dynamics.....

And we (the spinners) had completely ignored gluon's contribution to the spin!

Nucleon Spin

 Proton Spin: contributions from quark-anti-quarks (ΔΣ), <u>polarized glue(ΔG)</u> and possibly from the orbital angular momentum (L) Quark Model QCD + Orbital motion

The RHIC Spin Program @ BNL, NNPSS 2007

Note however some unique consequences....

- Gluons are charge-less
 - So the photons can not directly interact with them!
- Photons are colorless
 - So the gluons can not interact with them either!

So lets do the same type of QCD evolution analysis with the polarized DIS data, as we did with the HERA data..... --DOES NOT WORK!

Spin structure Functions

- Measurements over the last twenty odd years
- SMC measure lowest x
- SLAC/Jlab measure highest x
- Data consistent amongst all experiments over a large range of Q^2
- But there should be differences if gluon polarization is sizable, the the spin structure functions should evolve with Q^2

Scaling Violations of Spin SF

- World's all available g_1 data
- Coefficient and splitting functions in QCD at NLO
- Evolution equations: DGLAP

$$f(x) = x^{\alpha}(1-x)^{\beta}(1+ax+bx^2)$$

• Quark distributions fairly well determined, with small uncertainty

 $-\Delta\Sigma = 0.23 + -0.04$

- Polarized Gluon distribution has largest uncertainties
 - $-\Delta G = 1 + 1.5$
 - A LARGE UNCERTAINTY! Why?

Not enough x-Q² range in polarized DIS

Large amount of polarized data since 1998... but not in NEW kinematic region!

Is there another way?

- *How about direct measurement of gluons?*
 - Protons are full of gluons as we have learnt from HERA... in fact they carry 50% of the proton's momentum....
 - Why not collide polarized protons on polarized protons....
 - Gluon-gluon scattering
 - Gluon-quark scattering
 - Quark-quark scattering
 - The first two g-g and g-q scattering clearly of interest
 - How can we use this effectively?

WHY NOT COLLIDE POLARIZED PROTONS ON POLARIZED PROTONS? GLUE-GLUE AND GLUE-QUARK COLLISIONS MIGHT BE OF USE! ==> RHIC SPIN PROGRAM AT BNL!

RHIC at BNL

The RHIC Spin Program @ BNL, NNPSS 2007

RHIC Polarized Collider

RHIC Spin Physics Program

- Direct measurement of polarized gluon distribution using multiple probes: Measure <u>double spin asymmetry A_{IL}</u> in
 - $gg_{\prime}qg \longrightarrow \pi^{0,+,-} + X$
 - gg → c-cbar, b-bbar + X
 - gq → γ+X
- Direct measurement of anti-quark polarization using parity violating production of W^{+/-} in single spin A_L
 u + dbar → W⁺ + v₁ and ubar + d → W⁻ + v₁
- Transverse spin: Transversity & transverse spin effects: possible connections to orbital angular momentum?

PHENIX Detector at RHIC

- Design philosophy:
 - High resolution limited acceptance
 - High rate capability DAQ
 - Excellent triggers for rare events
- Central arm
 - Tracking: Drift chambers, pad chambers, time expansion chamber
 - Superb EM Calorimetry PbGl, PbSc
 ΔφxΔη~0.01 x 0.01
 - π^0 to 2γ resolved up to 25 GeV pT
 - Particle Identification: RICH, TOF
- Forward Muon Arms:
 - Muon tracker, muon identifiers
- Global detectors:
 - Beam beam collision (BBC) counter, Zero Degree Calorimeters (ZDCs)
- Online monitoring, calibration and production

STAR Detector at RHIC

Local Polarim. • Design Philosophy:

•*Maximize acceptance at* the cost of resolution

•Subsystems:

- $f = 2\pi$ acceptance in EM calorimetry Barrel and EndCap Total: -1 < h < 2
- Time Projection Chamber
- Separate Forward pion detector
- Silicon vertex tracker
- Beam-Beam Counters
- Zero Degree Calorimeter

Exquisite Control of Systematics

Flexibility & Spin Manipulation at RHIC: Access to different physics

Polarizations Achieved

Luminosity Delivered

A typical "good" store (Run-6)

Typically:

8-10 hr stores Average polarization 60%

No evidence of beam polarization loss Measurements every 2 hrs

Average time between stores ~ 2.5 hrs in run6 Could be as short as 1 hr

About 3-4 times this is the average goal, and 65-70% beam polarization

Polarized Collider Development

Parameter	Unit	2002	2003	2004	2005	2006	Design
No. of bunches		55	55	56	106	111	111
bunch intensity	1011	0.7	0.7	0.7	0.9	1.4	2.0
store energy	GeV	100	100	100	100	100	100 250
β*	m	3	1	1	1	1	1
peak luminosity	10 ³⁰ cm ⁻² s ⁻¹	2	6	6	10	35	80
average luminosity	10 ³⁰ cm ⁻² s ⁻¹	1	4	4	6	20	60
Collision points		4	4	4	3	2	2
average polarization, store	%	15	35	46	47	60-65	70
July 12, 2007 The RHIC Spin Program @ BNL, NNPSS 2007 43							

Each milestone below was developed in the last 10 years!

- Production of polarized protons
- Acceleration of polarized protons from low energies (100s of MeV/c) to high energies(100-250 GeV/c)
 - Measurements of polarization on the way
- Measurement of beam polarization
 - Initial diagnostics, in each energy step on the way
 - Finally only initial and final
- For experiments, confirm the orientation of the polarized protons in collisions (Local Polarimetry)
 - Transverse, natural, easy
 - Longitudinal, with spin rotators, required new physics ideas to be developed

Siberian Snakes at RHIC

(Funded by RIKEN Institute in Japan)

Depolarizing Resonance: Spin tune = no. of spin kicks Imperfection resonances: --magnet errors & mis-alignements Intrinsic resonances: --vertical focusing fields

Effect of depolarizing resonances averaged out by rotating spin by large angles on each turn

RIKEN/BNL

4 helical dipoles → S. snake
2 snakes in each ring
-- axes orthogonal to each other

Proton Beam Polarimetry at high energy

How do we know our protons are polarized when they collide?

Beam polarization measurement (1)

- Use single spin asymmetry in elastic scattering of p-p and p-Carbon
 - Coulomb Nuclear
 Interference (CNI)
 kinematics

For a known/understood scattering process, measure the single spin asymmetry and calculate the **beam polarization**.

RHIC Absolute polarization

Elastic p-p scattering single spin asymmetry as a function of momentum transfer t

Best Thesis Award 2006, Hiromi Okada

- Calculation by Shwinger 1946
- Unknown spin-flip amplitude
- Now found to be zero

Beam polarization monitor...

- Use p-Carbon CNI scattering, similar in every thing except, the calculation uncertainty large
- The event rate is however very large: ~ 1 Mevents/seconds
 - Asymmetry measured for 20 sec to confirm that beam is polarized
 - Measurements performed every ~2 hrs
- No sign of beam depolarization has ever been observed in RHIC when things are going well
- Other systematic effects such as possibilities of beam profile in transverse direction, are now being studied.
 - Methods to correct the beam polarization known and understood

"Local Polarimeter"

Experiments: Local Polarization Vector study/confirmation

- Stable vector beam polarization direction in RHIC is transverse (vertical) along the direction of the accelerator's holding field
- For longitudinal double and single spin asymmetries A_{LL} and A_L , longitudinal orientation at the experiment is achieved using SPIN ROTATOR MAGNETS (SRM)
- Direction of spin orientation being nearly longitudinal is confirmed using physics measurements, often called "Local Polarimeters"
 - They simply confirm experimentally, that the SRMs are doing their job

Local Polarimetry

- PHENIX
 - FIRST Observation of forward neutron production single spin left-right asymmetry
 - Zero Degree Calorimeter: detects a neutron
 - Shower Max detector: detects the position of the neutron (left/right)
 - Lack of residual beam left-right or up-down asymmetry signals proper rotation of spin vector from vertical to longitudinal
- STAR
 - Uses a similar asymmetry in particle production in the forward region using their Beam-Beam Collisions Counters

PHENIX Local Polarimeter

Measured Asymmetry During Longitudinal Running (2005)

∆G at RHIC Spin

Probing \Delta G in pol. pp collisions

RHIC Spin Physics

	Reaction	Dom. partonic process	probes	LO Feynman diagram	
	$\vec{p}\vec{p} \rightarrow \pi + X$	$ec{g}ec{g} ightarrow gg$ $ec{q}ec{g} ightarrow qg$	Δg	مي رو وي معد روو	
	$\vec{p}\vec{p} \rightarrow \text{jet}(s) + X$	$ec{g}ec{g} ightarrow gg \ ec{q}ec{g} ightarrow qg$	Δg	(as above)	
	$\vec{p}\vec{p} \rightarrow \gamma + X$ $\vec{p}\vec{p} \rightarrow \gamma + \text{jet} + X$	$\begin{array}{ccc} q \overline{g} ightarrow \gamma q \\ q \overline{g} ightarrow \gamma q \end{array}$	$\Delta g \\ \Delta g$	<u>></u> _<	
	$\vec{p}\vec{p} \rightarrow \gamma\gamma + X$	$\vec{q}\vec{q} \rightarrow \gamma\gamma$	$\Delta q, \Delta \overline{q}$		
	$\vec{p}\vec{p} \rightarrow DX, BX$	$ec{g}ec{g} o c ec{c}, b ec{b}$	Δg) See	
	$\vec{p}\vec{p} \rightarrow \mu^+\mu^- X$ (Drell-Yan)	$\vec{q}\vec{q} ightarrow \gamma^* ightarrow \mu^+\mu^-$	$\Delta q, \Delta \bar{q}$	$\rightarrow \sim \sim$	
	$\vec{p}\vec{p} \rightarrow (Z^0, W^{\pm})X$ $p\vec{p} \rightarrow (Z^0, W^{\pm})X$	$ \begin{array}{c} \vec{q}\vec{q} \rightarrow Z^0, \vec{q}^{\prime}\vec{q} \rightarrow W^{\pm} \\ \vec{q}^{\prime}\vec{q} \rightarrow W^{\pm}, q^{\prime}\vec{q} \rightarrow W^{\pm} \end{array} $	$\Delta q, \Delta \bar{q}$	>	
July 12, 2007				-	

Calibration of our probes...

- Measurement of a cross section involves:
 - Detailed understanding of the luminosity
 - Detailed understanding of the detector
- Comparison of the data (above) with theory, if it is good:
 - Theoretical framework used for the calculation seems to be applicable in this kinematic regime
 - Gives us confidence that the double spin asymmetries measured, could be interpreted in terms of polarized gluon distributions using the same theoretical tools...
- An extremely important check, which we make a "MUST" for any measurement we want to publish.

Good agreement between NLO pQCD calculations and data \Rightarrow confirmation that pQCD can be used to extract spin dependent pdf's from RHIC data.

Same comparison fails at lower energies

The RHIC Spin Progr

Unpol. Cross Section in pp

Again, good agreement between NLO pQCD calculations and data

July 12, 2007

Measuring A_{LL}

$$A_{LL} = \frac{d\sigma_{_{++}} - d\sigma_{_{+-}}}{d\sigma_{_{++}} + d\sigma_{_{+-}}} = \frac{1}{|P_1P_2|} \frac{N_{_{++}} - RN_{_{+-}}}{N_{_{++}} - RN_{_{+-}}}; \qquad R = \frac{L_{_{++}}}{L_{_{+-}}}$$

(N) Yield(R) Relative Luminosity(P) Polarization

✓ Bunch spin configuration alternates every 106 ns

✓ Data for all bunch spin configurations are collected at the same time ⇒ Possibility for false asymmetries are greatly reduced

Run6 $\pi^0 A_{LL}$

- Run6 scaling error based on online polarization values. Final scaling error expected to be ~10%
- Grey band is systematic uncertainty due to Relative Luminosity, and is p_T independent.
- Run6 Data favor "GRSV $\Delta G=0$ " over GRSV-std

Theory	χ²/NDF	CL(%)	
GRSV-std	23.8/8*	0.25	
GRSV ∆G=0	7.9/8*	44	

*Theoretical uncertainties not included

From A_{LL} to ΔG (with GRSV)

"std" scenario, $\Delta G(Q^2=1GeV^2)=0.4$, is excluded by data on >3 sigma level: $\chi^2(std)-\chi^2_{min}>9$

- ✓ Only exp. stat. uncertainties are included (the effect of syst. uncertainties is expected to be small in the final results)
- ✓ Theoretical uncertainties are not included

Extending x range is crucial!

Need to Extend x Range and the shape!

- By measuring at different center of mass energies, we can reach different *x* ranges.
- We can extend our x coverage towards lower x at $\sqrt{s} = 500$ GeV. Expected to start in 2009.
- We can extend our x coverage towards higher x at $\sqrt{s} = 62.4 \text{ GeV}$. \rightarrow Run6

Different √s

Sensitivity of Run6 $\sqrt{s}=62$ GeV data collected in one week is comparable to Run5 $\sqrt{s}=200$ GeV data collected in two months, for the same $x_T=2p_T/\sqrt{s}$ $\sqrt{s}=500$ GeV will give access to lower x; starts in 2009 $\sqrt{s}=62 \text{ GeV } \pi 0 \text{ cross section}$ described by NLO pQCD within theoretical uncertainties

ΔG : what's next

- Improve exp. (stat.) uncertainties and move to higher pT
- □ Different channels
 - ✓ Different systematics
 - ✓ Different x
 - ✓ $gq \rightarrow g\gamma$ sensitive to ∆G sign

- $\Box pp \rightarrow \gamma + jet \text{ and } pp \rightarrow jet + jet$ $\checkmark Map \Delta G vs x$
- □ Different \sqrt{s} \checkmark Different x

These might be of interest to many in this audience for potential theses and post doctoral work projects!

θ Global analysis✓ Within pQCD framework

Improve exp. uncertainties

Need more FOM= P^{4} L (stat. uncertainty ~ \sqrt{FOM})

$pp \rightarrow \gamma + jet$, needed to constrain the shape of ΔG distribution...

Parton kinematics is well constrained, event-byevent

Lower x data provided by $\sqrt{s}=500$ GeV data is essential for reducing extrapolation (to lower x) errors
Summary of ΔG Measurement so far

- First measurements in a limited x range indicate, NO contribution to the ΔG integral from this measured region.
- Low x region needs to be explored
 - Will need operation at higher energy: I.e. Center of Mass energy of 500 GeV instead of 200 GeV of present operation: expected in 2009
- Precision measurement will also require measurement of the shape of the distribution in x
 - Semi-inclusive measurements will explore this
 - These might be rate-limited...

Study of transverse spin phenomena in the RHIC spin program

Transverse spin effects in proton

- An emergent science, driven mainly by experiments
- The story is both, intriguing and mysterious... with lots of complicated convolutions...
 - Compare & Contrast with Longitudinal Physics:
 - Quark spin (1989) and Gluon Spin (now) seem to be small when we expected large contributions...
 - Gluon spin is still unknown, but small in the region already measured...
 - Transverse spin not expected, and observed every where we look!
- A high level preview follows.

Early expectations... Sing Spin Asymmetries

Is pQCD applicable for $\sqrt{s} \le 50$ GeV ?

Eur.Phys.J.C36:371-374,2004., Data references therein

2 NLO calculations with different scales p_T and $p_T/2$

Cross-sections at $\theta = 90^\circ$

Sivers effect: due to transverse motion of quarks in the nucleon: initial state effect

Phys Rev D41 (1990) 83; Phys Rev D43 (1991) 261

INITIAL STATE EFFECT: Orbital angular momentum?

What does "Sivers effect" probe?

Quarks orbital motion adds/ subtracts longitudinal momentum for negative/positive $\hat{\mathbf{x}}$.

PRD66 (2002) 114005

Parton Distribution Functions rapidly fall in longitudinal momentum fraction x.

Final State Interaction between outgoing quark and target spectator.

The RHIC Spin Program @ BNL, NNP55 20

Collins (Heppelmann) effect: Final state of fragmentation hadrons

Example:
$$p^{\uparrow} + p \rightarrow h_1 + h_2 + X$$

 $s_1 \odot \odot$
 $s_1 \odot$
 $s_$

Collins function: analyzer of "Transversity"

$$\delta q(x,\mu) = q_{\uparrow}^{\uparrow}(x,\mu) - q_{\uparrow}^{\downarrow}(x,\mu)$$
 "with

 $q^{(\star)}(x,\mu)$: Probability to observe **parton** whose pol. vector is "with" or "against" the proton pol. vector with the renormalization scale μ .

 $\delta q(x,\mu)$ has not been measured experimentally.

Lattice QCD calculates the first moments of $\delta q(x,\mu)$ for u,d, s quarks and the sum at $\mu^2=2$ GeV².

$$\delta q(\mu) = \int_0^1 dx \left[\delta q(x,\mu) - \delta \overline{q}(x,\mu) \right]$$
$$\delta \Sigma(\mu) = \delta u(\mu) + \delta d(\mu) + \delta s(\mu)$$

"agains

- Each of these possibilities has
 - Different pT dependences
 - Different signs for different particle species
 - Different Center of Mass dependences
- A systematic study of the transverse spin physics is hence necessary, and just beginning.

SSAs have been measured in Deep Inelastic Scattering.

Using lepton beam and polarized proton target.

What about RHIC?

We know this is definitely perturbative regime... if the transverse spin effects are purely nonperturbative, they should **NOT** exist!

• MPC: Inclusive π^0 at $\sqrt{s} = 62 GeV$, $-3.7 < \eta < -3.1$

pp collision at √s=200GeV (2)

PRL97:152302, 2006.

Cross-sections at the forward region, $<\eta>=3.3$, 3.8 and 4.0 are mostly consistent with NLO pQCD calculations.

STAR

KKP FF : Nucl. Phys. B597, 337 (2001) Kretzer FF: Phys. Rev. D62, 054001 (2000).

SSA of π^0 and h^{\pm} from central-arms at $\sqrt{s}=200 GeV$

However... at large rapidities...

Measured di-jet SSAs are consistent with zero.

VY 1, VY 2 are calculations by Vogelsang & Yuan using HERMES-fitted quark Sivers function. PRD **72** (2005) 054028.

The RHIC Spin Program @ BNL, NNPSS 2007

Particle Identification using RICH

p,K identification < 30 GeV/*c*, > 17 Ge $\overline{p}c$ with efficiency ~ 97%

Jul mKKP: Nucl. Phys. B597, 337 (2001); Kretzer: Eur. Phys. J.C22, 269 (2001); AKK: Nucl. Phys. B725, 181 (2005)

π^{\pm} SSAs at 2.3 and 4 deg. at $\sqrt{s} = 200$ GeV

• SSA(K⁺), SSA(K⁻): positive 2-5% for $0.15 < x_F < 0.3$.

Summary of transverse physics @ RHIC

- It is just a beginning.....
 - To understand the complete structure of the nucleon spin, it is inevitable that we understand these unexpectedly large single spin transverse spin effects
 - Systematic studies only possible now with different sets of data, available for different species of particles, in different kinematic regions....
 - Enough fodder to thought for theorists to put these things together to start forming a coherent picture
- Connections to Generalized Parton Distributions?
 Christian Waiss's talk to many set of the set of the
 - Christian Weiss's talk tomorrow...

What's in it for me? This audience may ask....

Large data sets anticipated in near future... Detector upgrades associated with various physics measurements being approved...

OPPORUNITY!

Δq - Δq bar at RHIC via W production

102

Flavor separation of u,d,ubar,dbar

- With 500 GeV Center of Mass
- Blue for W+, Yellow for W-
- Various theoretical expectations shown as curves
 - GS95LO is Gehrmann & Stirling, D53, PRD 1995
 - BS is Bourley and Soffer, B445, NP 1996

PHENIX Upgrades

Silicon Tracking

VTX (barrel) by 2009 FVTX (forward) by 2011 Electromagnetic Calorimetry NCC by 2011 MPC, already installed! Muon trigger upgrade By 2009

Momentum selectivity in the LVL-1 trigger

 ΔG from heavy flavor, photon-tagged jets Expanded reach in x Flavor separation of spin asymmetries *W* physics at 500GeV Transverse Spin Physics

STAR Upgrade

ΔG from heavy flavor, jets

 Expanded reach in x

 Flavor separation of spin asymmetries

 W physics at 500GeV

 Transverse Spin Physics

Summary

- RHIC is the world's first polarized collider
 - Technology has been developed as needed, and has worked superbly in every aspect
- Over all project goal to study aspects of nucleon spin have begun
 - Early results on gluon's role in determining nucleon spin now emerging
 - Transverse spin phenomena being discovered, and understood in the framework of perturbative and non-perturbative models
- Only the beginning of the program:
 - Only about 1% of the luminosity delivered so far,
 - Ideal challenge for the experimentally & theoretically minded people in this audience to consider

Thanks...

• To many of my RHIC spin colleagues and collaborators. Many of the slides and figures used in this lecture were taken from their presentations, often without their knowledge....