Observation of the Radiative Decay Mode of the Free Neutron

R.L. Cooper ¹	T.E. Chupp ¹	M.S. Dewey ²	T.R. Gentile ²
H.P. Mumm ²	J.S. Nico ²	K.J. Coakley ³	B.M. Fisher ⁴
I. Kremsky ⁴	F.E. Wietfeldt	⁴ K.G. Kiriluk ⁵	E.J. Beise ⁵
	H. Breuer ⁵	J. Byrne ⁶	

¹University of Michigan ⁴Tulane University ²NIST, Gaithersburg, MD ⁵University of Maryland ³NIST, Boulder, CO ⁶University of Sussex

2 Experimental Setup

3 Analysis

4 Run II

2

イロト イ団ト イヨト イヨト

Radiative Decay of the Neutron

Motivation

- Rare branch recently measured, to 10%
- Aiming for a 1% measurement of photon spectrum
- Radiative corrections and new physics

Experimental Challenges

- Long τ_n (885.7 \pm 0.8 s)
- Small branching ratio
- Large γ backgrounds

Radiative Decay of the Neutron

Motivation

- Rare branch recently measured, to 10%
- Aiming for a 1% measurement of photon spectrum
- Radiative corrections and new physics

Experimental Challenges

- Long τ_n (885.7 \pm 0.8 s)
- Small branching ratio
- Large γ backgrounds

A D M A A A M M

Radiative Decay of the Neutron

Motivation

- Rare branch recently measured, to 10%
- Aiming for a 1% measurement of photon spectrum
- Radiative corrections and new physics

Experimental Challenges

- Long τ_n (885.7 \pm 0.8 s)
- Small branching ratio
- Large γ backgrounds

Feynman Diagrams

- Diagrams a.) and b.) QED calculable; c.) requires HBχPT EFT
- Proton bremsstrahlung suppressed O(1/m_p)
- Electron bremsstrahlung dominates

< 47 ▶

- Photon energy acceptance 15 - 340 keV
- BR = 2.85 x 10⁻³
 [theory]
- Characteristic 1/k IR divergence of bremsstrahlung

< ロ > < 回 > < 回 > < 回 > < 回</p>

2 Experimental Setup

3 Analysis

4 Run II

2

Experimental Apparatus

NNPSS 2007, Tallahassee, FL ()

э

<ロト < 回 > < 回 > < 回 > .

Experimental Apparatus

2

・ロト ・ 四ト ・ ヨト ・ ヨト

Experimental Apparatus (continued)

Built from existing NIST neutron lifetime apparatus and emiT beamline (collimation and shielding)

NNPSS 2007, Tallahassee, FL ()

Radiative Neutron β -Decay

- *e*⁻ and *p* constrained to cyclotron orbits
- Protons need -25 kV acceleration into SBD
- Electrostatic mirror reflects "wrong-way" protons (*E_p* ≤ 750 eV)
- Mirror a free parameter of experiment

Operating Conditions

- Cryogenic temperatures
- High B-field

BGO

- Light yield \uparrow as T \downarrow
- Large size (20 cm long)
- 15 keV 340 keV primarily photopeak

APD

- Gain \uparrow as T \downarrow
- o Noise ↓ as T ↓

Operating Conditions

- Cryogenic temperatures
- High B-field

BGO

- Light yield \uparrow as T \downarrow
- Large size (20 cm long)
- 15 keV 340 keV primarily photopeak

APD ● Gain ↑ as T↓ ● Noise↓ as T↓

Operating Conditions

- Cryogenic temperatures
- High B-field

BGO

- Light yield \uparrow as T \downarrow
- Large size (20 cm long)
- 15 keV 340 keV primarily photopeak

APD

- Gain \uparrow as T \downarrow
- o Noise ↓ as T ↓

Operating Conditions

- Cryogenic temperatures
- High B-field

BGO

- Light yield \uparrow as T \downarrow
- Large size (20 cm long)
- 15 keV 340 keV primarily photopeak

APD

- Gain \uparrow as T \downarrow
- o Noise ↓ as T ↓

2 Experimental Setup

4 Run II

2

イロト イ理ト イヨト イヨト

- *e*⁻ and γ correlated in time for radiative decay events
- Uncorrelated background "flat" in time
- Correlated background small
- *R_{epγ}* is normalized to *R_{ep}* for each mirror voltage

Monte Carlo Modeling

- Effective fiducial volume complicated
- Detailed tracking and modeling performed
- 4th Runge-Kutta and adiabatic transport

Effect of Mirror Potential

- Data fit to Monte Carlo shape. BR = $3.13 \pm 0.34 \text{ x} 10^{-3}$ for 15-340 keV photons.
- HBχPT calculation 2.85 x 10⁻³ [Bernard et al., Phys. Lett. B 593, 105 (2004)]

• J.S. Nico et al. Nature 444 1059 (2006).

2 Experimental Setup

3 Analysis

2

イロト イ団ト イヨト イヨト

12-Element Detector

Nearly complete!

- 12 BGO crystals coupled to 12 APDs
- 12 independent HV and signals
- Cryostat tests with external sources (e.g. ²⁴¹Am)
- Other improvements to reduce systematics

12-Element Detector (continued)

NNPSS 2007, Tallahassee, FL ()

Radiative Neutron *β*-Decay

- NIST lifetime apparatus was reused
- Novel photon detector; BGO scintillating crystal coupled to APD operates in the bore of a superconducting magnet
- Triple coincidence of e^- , p, and γ suppresses backgrounds
- Extensive Monte Carlo to model detector response
- Branching ratio in agreement with theory
- 12-Element detector under construction with other improvements to do a 1% precision measurement