#### Nuclear & Particle Physics of Compact Stars

Madappa Prakash Ohio University, Athens, OH

National Nuclear Physics Summer School July 24-28, 2006, Bloomington, Indiana

# The Role of the Equation of State in Binary Mergers

Madappa Prakash Ohio University, OH

#### &

#### PALS

Saša Ratković (London)

James M. Lattimer (Stony Brook University)





Jim





# **Our Thoughts on this Subject**

1. M. Prakash, Jl. Phys. G.: Nucl. Part. Phys. **30**, S451 (2003)

2. S. Ratkovic, M. Prakash & J. M. Lattimer, Jl. Phys. G.: Nucl. Part. Phys. **30**, S1279 (2004)

3. S. Ratkovic, M. Prakash & J. M. Lattimer, astro-ph/0512133; 0512136 ApJ (2006), To be published.

# **The Binary Merger Experience** The Ultimate Heavy-Ion Collision



•  $M_1 \leq M_2$ 

- radial separation: a(t)
- $\blacktriangleright$   $M_1$  NS or SQM
- $M_2$  BH, NS, ...
- ► GW emission  $\Rightarrow$

$$L_{GW} = \frac{1}{5} \frac{G}{c^5} \left\langle \ddot{I}_{jk} \ddot{I}_{jk} \right\rangle$$
$$= \frac{32}{5} \frac{G^4}{c^5} \frac{M^3 \mu^2}{a^6}$$

orbit shrinksMass transfer

# **Einstein's General Relativity** $G^{\alpha\beta}[g,\partial g,\partial^2 g] = 8\pi T^{\alpha\beta}[g]$

- $G^{\alpha\beta}: 2^{nd}$ -order nonlinear differential operator acting on  $g_{\alpha\beta}$
- $T^{\alpha\beta}$ : Stress-energy tensor of matter fields

Parametrized Post-Newtonian (PPN) Formulation In weak field limit,

$$g_{\mu\nu}^{PPN} = \eta_{\mu\nu} + h_{\mu\nu}^{1PN}(M) + h_{\mu\nu}^{2PN}(M) + h_{\mu\nu}^{3PN}(M) + \cdots$$

- $\eta_{\mu\nu}$ : flat-space Minkowski metric
- M: incorporates dependence on matter fields
- $1PN, 2PN, \dots \Rightarrow [\mathcal{O}(v^2/c^2)]^{\epsilon}$  with  $\epsilon = 1, 2, \dots$

For vacuum gravitational fields (in transverse traceless gauge),

$$\left(-\frac{\partial^2}{\partial t^2} + \nabla^2\right)h_{\times/+} = 0$$

# **GW Lines of Force**



#### GW's have two transverse polarizations, $h_+ \& h_{\times}$ .

## **Laser Interferometer GW Detector**



For a readable account, see K. Thorne, arXiv:gr-qc/9506084

#### **Gravitational Wave Detection**

- GW Strain :  $h(t) = F_{\times}h_{\times}(t) + F_{+}h_{+}(t)$ 
  - $F_{\times,+}$ : Constants of order unity
  - $h_{\times,+} \sim \frac{\delta L}{L_0} \sim \frac{1}{c^2} \frac{4G(E_{kin}^{ns}/c^2)}{r}$ : Gravitational waveforms
    - $L_0$ : Unperturbed length of detector arm
    - $\delta L$  : Relative change in length
    - $E_{kin}^{ns}$ : Nonspherical part of the internal kinetic energy
  - ELF:  $10^{-15} 10^{-18}$  Hz VLF:  $10^{-7} 10^{-9}$  Hz\*
  - LFB :  $10^{-4}$  Hz 1 Hz, HFB : 1 Hz  $10^{4}$  Hz
- ► Astrophysical Sources Radiating GW's in the HFB
  - Supernovae Supernovae  $1.4 M_{\odot}$  NS Binaries  $10 M_{\odot}$  BH Binaries
    - at 10 Mpc Milky Way  $h \sim 10^{-18}$ at 10 Mpc  $h \sim 10^{-20}$ at 150 Mpc  $h \sim 10^{-20}$
- $h \ge 10^{-25}$

# **Inspiral Waveform**

Chirp signal:



$$h_{+} \propto \frac{\mathcal{M}^{5/3}}{r} f^{2/3} \cos(2\pi f t)$$
  
 $h_{\times} \propto \frac{\mathcal{M}^{5/3}}{r} f^{2/3} \sin(2\pi f t)$   
 $f = K_0 \mathcal{M}^{-5/8} (t_c - t)^{-3/8}$ 

10<sup>-22</sup> with the "chirp mass":

$$\mathcal{M} = (M_1 M_2)^{3/5} M^{-1/5}$$

and the constant:

$$K_0 = \frac{5^{3/8}}{8\pi} \left(\frac{c^3}{G}\right)^{5/8}$$



▶ Binary pulsar PSR 1913+16
 ▶ Period: 7 h 45 min
 ▶ M<sub>NS</sub> = 1.4408 ± 0.0003 M<sub>☉</sub>
 ▶ M<sub>c</sub> = 1.3873 ± 0.0003 M<sub>☉</sub>
 ▶ Distance: 7.13 kpc
 ▶ Merger in 300 Myr

# **Merger Rates of Binary Systems**

| Author(s)        | Information             | Туре   | Merger Rate        |
|------------------|-------------------------|--------|--------------------|
| Phinney (1991)   | pulsar lifetimes,       | cons.  | $5 \times 10^{-8}$ |
|                  | distributions           | bguess | $7 \times 10^{-6}$ |
| Van den Heuval & | pulsar detectability,   | cons.  | $3 \times 10^{-7}$ |
| Lorimar (1996)   | distribution            | bguess | $8 \times 10^{-6}$ |
| Bailes (1996)    | galactic pulsar         | lbound | $10^{-7}$          |
|                  | birth rates             | ubound | $10^{-5}$          |
| Potegies Zwart & | "scenario machine"      |        | 0.2 - 3            |
| Yungelson (1998) | w/ supernova kicks      |        | $\times 10^{-5}$   |
| Bethe &          | common envelope         | ubound | $10^{-5}$          |
| Brown (1998)     | hypercritical accretion |        |                    |

Rates in yr<sup>-1</sup> Mpc<sup>-3</sup> 1 pc =  $3 \times 10^{18}$  cm.

| <b>Discovery of Double-Pulsar System</b> |                           |                            |  |
|------------------------------------------|---------------------------|----------------------------|--|
| Pulsar                                   | PSR J0737-3039A           | PSR J0737-3039B            |  |
| Pulse Period $P$ (ms)                    | 22.69937855615(6)         | 2773.4607474(4)            |  |
| Period derivative $\dot{P}$              | $1.74(5) \times 10^{-18}$ | $0.88(13) \times 10^{-15}$ |  |
| Orbital period $P_b$ (day)               | 0.102251563(1)            | —                          |  |
| Eccentricity e                           | 0.087779(5)               | —                          |  |
| Characteristic age (My)                  | 210                       | 50                         |  |
| Magnetic field $B_s$                     | $6.3 \times 10^{9}$       | $1.6 \times 10^{12}$       |  |
| Spin-down                                |                           |                            |  |
| luminosity $\dot{E}$ (erg/s)             | $5.8 \times 10^{33}$      | $1.6 \times 10^{30}$       |  |
| Distance (kpc)                           | $\sim 0.6$                | —                          |  |
| Stellar mass                             | 1.337(5)                  | 1.250(5)                   |  |

Merger expected in 85 Myr, a factor 3.5 shorter than PSR 1913+16
A.G Lyne et al., Science, 303, 1153 (2004)
Kalogera et al. (2004): Revisions w/ PSR J037-3039 imply 1 event per 1.5 yr for initial LIGO (for advanced LIGO, 20-1000 events per yr).

# PSR J0737 3039 and LIGO

► Merger rate  $R \propto N/\tau$ 

**b** Binary pulsar lifetime:  $\tau = \tau_{BIRTH} + \tau_{COAL}$ .

 $\frac{\tau_{1913}}{\tau_{0737}} = \frac{365 \text{ Myr}}{185 \text{ Myr}} \approx 2$ 

• scaling factor  $N \propto L_{400}^{-1}$ 

$$\frac{N_{0737}}{N_{1913}} = \frac{L_{1913}}{L_{0737}} = \frac{200 \text{ mJy kpc}^2}{30 \text{ mJy kpc}^2} \approx 6$$

 $2 \times 6 = 12 \Rightarrow$  an order of magnitude increase of merger rates!

# **GW Detectors & Expected Gains**

- Ground-Based Laser Interferometers
  - LIGO, VIRGO, GEO, TAMA, ...
- ► The Laser Interferometer Space Antenna (LISA)
- GW's provide valuable new information "orthogonal" to electromagnetic observations
  - First direct test of GR
  - Precise ( $\pm$  a few %) determination of Hubble's constant  $H_0$
  - Calibration of distance measurements
  - Masses of NS, BH (large scale structure formation)
  - .....

# **Objectives**

- ► Explore EOS dependence of GW signals from mergers.
  - Specifically, look at differences between "normal" stars and "self-bound" (e.g., SQM) stars.
    - EOS parameter :  $\alpha(M_1) \equiv d \ln(R_1) / d \ln(M_1)$
    - $\circ \alpha_{NS} \leq 0$ , while  $\alpha_{SQM} \geq 0 \ (\approx 1/3)$

▶ Incorporate analysis to include GR (2PN, ...) orbital dynamics.

- Extend the Roche lobe analysis from Newtonian to 2PN, ... GR makes stable mass transfer easier.
- Utilize pseudo-GR potential to account for innermost circular orbit changes as a function of mass ratio. Study effects on results for existence of stable mass transfer.
- Explore astrophysical consequences of differences in  $\alpha(M_1)$  in (1) merger time scales and (2) GW signals.



- $M \sim (1-2)M_{\odot}$  $M_{\odot} \simeq 2 \times 10^{33} \text{ g.}$
- ►  $R \sim (8 16) \text{ km}$
- ▶  $\rho > 10^{15} \text{ g cm}^{-3}$
- ►  $B_s = 10^9 10^{15}$  G.
  - Tallest mountain:  $\sim \frac{E_{liq}}{Am_p g_s} \sim 1 \text{cm}$
- Atmospheric height:  $\sim \frac{RT}{\mu g_s} \sim 1 \text{cm}$

Lattimer & Prakash, Science 304, 536 (2004).



**Equation of State:**  $\alpha(M)$ 



# **Roche Lobe Overflow**





Energy Loss

$$L_{GW} = \frac{1}{5} \langle \ddot{\vec{F}}_{jk} \ddot{\vec{F}}_{jk} \rangle = \frac{32}{5} a^4 \mu^2 \omega^6$$

Angular Momentum Loss

$$\left(\dot{J}_{GW}\right)_{i} = \frac{2}{5}\epsilon_{ijk}\langle\ddot{F}_{jm}\ddot{F}_{km}\rangle = \frac{32}{5}a^{4}\mu^{2}\omega^{5}$$

- ▶ a(t) and  $V_{Roche}$  shrink!
- $\blacktriangleright R_1 = r_{Roche}$ 
  - $\Rightarrow$  Mass transfer begins!
- ► To merge or not to merge?

# **Pseudo-GR Potentials**

Paczyński-Wiita (accretion disks)

$$\phi_N(r) = -\frac{M}{r} \qquad \rightarrow \qquad \phi_{PW}(r) = -\frac{M}{r - r_G}$$

Innermost Circular Orbit (ICO) at r<sub>ICO</sub> = 3r<sub>G</sub>; r<sub>G</sub> = 2M
Post-Newtonian (PN): r<sub>ICO</sub> < 3r<sub>G</sub> for q ≠ 0

Pseudo-GR or Hybrid Potential :

$$\phi_H(r) = -\frac{M}{r-\zeta(q)r_G}; \qquad q = M_1/M_2$$

►  $\zeta(q)$  - Mimics 2PN, 3PN Corrections to ICO

#### **Test Particle Effective Potentials and ICO**



22/36

#### **Roche Lobes: PW vs. 2PN**



### **Effective Roche Lobe Radii**



# Ratković, Prakash, & Lattimer (2005)



# **Orbital Evolution**

Angular Momentum Loss :

$$\left[\frac{1-q}{1+q} + \frac{r_G q \zeta'(q)}{a-\zeta(q)r_G}\right]\frac{\dot{q}}{q} + \frac{a-3\zeta(q)r_G}{2(a-\zeta(q)r_G)}\frac{\dot{a}}{a} = -\frac{\dot{J}_{GW}}{J_{BS}} = -\frac{32}{5}a^2\mu\omega^4$$

► Roche Lobe :

$$\frac{\dot{q}}{q} = \frac{1 - \frac{\partial \ln C(q, z)}{\partial \ln z}}{\frac{\alpha(M_1)}{1 + q} - \frac{\partial \ln Q(q)C(q, z)}{\partial \ln q}} \times \frac{\dot{a}}{a}$$

Connection to the dense matter EOS through

$$\alpha(M_1) \equiv \frac{d\ln(R_1)}{d\ln(M_1)}$$

# **Regions of stable mass transfer**

Dashed curves: Lower mass limit to  $M_2$  for stable mass transfer. Solid curve: Upper boundary for transfer beginning outside the ISCO.



### **Evolution: Orbit Separation** *a*



27/36

#### **Evolution: Mass Ratio** q



28/36

### **Evolution: Angular Frequency** $\omega$



# **Evolution: Distance** $\times$ **Gravitational Ampitude** $rh_+$



# **Evolution: Normal Star (***APR***)**



►  $M = 4M_{\odot}, q_{ini} = 1/3$ 

- GR speeds up evolution
- a(t) increases after
   "touchdown"
- ω(t) stabilizes at long times
- Little variation among EOS's of normal stars.
- $M_1$  approaches the NS minimum mass; subsequent plunge (timescale ~ a few minutes) yields a second spike in the GW signal !

# **Evolution:** SQM Star



# **Major Results**

- ► Incorporating GR into orbital dynamics leads to an evolution that is faster than the Newtonian evolution.
- ► Large differences exist between mergers of "normal" and "self-bound (SQM)" stars.
  - SQM stars penetrate to smaller orbital radii; stable mass transfer is more difficult than for normal stars.
  - For stable mass transfer,  $q = M_1/M_2$  and  $M = M_1 + M_2$ limits on SQM stars are more restrictive than for normal stars.
  - The SQM case has exponentially decaying signal and mass, while normal star evolution is slower.

# **Future Tasks**

- Evolution of normal & self-bound star-black hole mergers including the effects of
  - non-conservative mass transfer,
  - tidal synchronization,
  - the presence accretion disk, etc.
- Calculation of templates of expected GW signals



