Nuclear & Particle Physics of Compact Stars

Madappa Prakash Ohio University, Athens, OH

National Nuclear Physics Summer School July 24-28, 2006, Bloomington, Indiana

Thermal Evolution of a Neutron Star

(Spherical, non-rotating & non-magnetic)

$$\frac{dM}{dr} = 4\pi r^{2}\epsilon; \qquad \frac{dP}{dr} = -\frac{GM\epsilon}{c^{2}r^{2}} \left[1 + \frac{P}{\epsilon}\right] \left[1 + \frac{4\pi r^{3}P}{Mc^{2}}\right] e^{2\Lambda}$$

$$\frac{d}{dr} \left(Te^{\Phi/c^{2}}\right) = -\frac{3}{16\sigma} \frac{\kappa\rho}{T^{3}} \frac{L_{d}}{4\pi r^{2}} e^{\Phi/c^{2}} e^{\Lambda}$$

$$\frac{d\Phi}{dr} = \frac{G\left(M + 4\pi r^{3}P/c^{2}\right)}{r^{2}} e^{2\Lambda}$$

$$\frac{d}{dr} \left(L_{\nu}e^{2\Phi/c^{2}}\right) = \epsilon_{\nu}e^{2\Phi/c^{2}} 4\pi r^{2}e^{\Lambda}$$

$$\frac{d}{dr} \left(Le^{2\Phi/c^{2}}\right) = -c_{\nu}\frac{dT}{dt}e^{\Phi/c^{2}} 4\pi r^{2}e^{\Lambda}, \quad \text{with} \quad \Lambda = \exp(1 - 2GM/c^{2}r)^{-1/2}$$

$$(P,\epsilon): \text{ (Pressure, energy density)} \quad M: \text{ Enclosed mass}$$

$$\kappa: \text{ Opacity of matter } \quad \Phi: \text{ Gravitational potential}$$

$$L_{\nu}, \epsilon_{\nu}): \text{ Neutrino (luminosity, emissivity)}$$

$$L = L_{d} + L_{\nu}; \text{ Net luminosity}$$

 c_v : Specific heat/volume, Time t measured at $r = \infty$.

Boundary Conditions

Inner boundary conditions:

 $M(0) = L(0) = L_{\nu}(0) = 0$

Outer boundary conditions:

$$P_s = \frac{2}{3}g_s/\kappa_s, \qquad L_s = L_d(R) = 4\pi R^2 \sigma T_s^4$$
$$e^{\Phi/c^2} = \left(1 - \frac{2GM}{c^2 r}\right)^{-1/2} = e^{-\Lambda}$$

 $g_s = (GM/R^2)e^{\Lambda_s}$: Surface gravity (κ_s, T_S): Opacity and temperature at the surface

Physics ingredients:

- Equation of state $P = P(\epsilon)$
- Opacity κ and specific heat c_v
- Photon and neutrino emissivites

Equation of State

Moderate variation with nucleons-only matter.

Page, Lattimer, Prakash & Steiner, ApJS 155, 623 (2004).

Specific Heat

Distribution of C_v in the core among constituents

Page, Lattimer, Prakash & Steiner, ApJS 155, 623 (2004).

Neutrino Emission Processes

• The direct Urca process :

$$n \rightarrow p + e^- + \bar{\nu}_e \quad \& \quad p + e^- \rightarrow \quad n + \nu_e$$

cannot occur if the proton abundance is small as energy and momentum are not simultaneously conserved.

• For $T \ll T_F \sim 10^{12}$ K, momenta $\sim p_{F_i}$ for i = n, p & e. Neutrino and antineutrino momenta are $\sim kT/c \ll p_{F_i}$.

• Chemical equilibrium requires $\mu_n = \mu_p + \mu_e$. Energy can be conserved for some states close to E_{F_i} .

For momentum conservation, the three triangle inequalities

$$p_{F_i} + p_{F_j} \geq p_{F_k}$$
, where $i, j \& k \text{ are } p, e \& and n$,

must be satisfied failing which the modified Urca processes, featuring a bystander particle that enables momentum conservation, occur.

Threshold proton fraction

- Number densities : $n_i = k_{Fi}^3 / (3\pi^2)$ for i (n, p or e).
- Proton fraction : $x = n_p/(n_p + n_n)$.

At threshold, momentum conservation implies $k_{Fn} = k_{Fp} + k_{Fe}$.

$$x_c = \frac{k_{Fp}^3}{k_{Fp}^3 + (k_{Fp} + k_{Fe})^3} = \frac{1}{1 + (1 + k_{Fe}/k_{Fp})^3}.$$

In charge neutral n, p & e matter, $n_p = n_e$, or $k_{Fp} = k_{Fe}$.

• Hence, the proton fraction at threshold is $x_c = 1/9$. In charge neutral $n, p, e \& \mu$ matter, $n_e + n_\mu = n_p$ and $\mu_e = \mu_\mu$.

$$k_{Fe}^3 + \left(k_{Fe}^2 - m_{\mu}^2\right)^{3/2} = k_{Fp}^3$$

For $\mu_e = k_{Fe} >> m_{\mu}$, one has $k_{Fe} = k_{F\mu} = (1/2)^{1/3} k_{Fp}$, which gives

$$x_c = \frac{1}{1 + (1 + 1/2^{1/3})^3} \simeq 0.148.$$

DUrca Threshold Density-I

• Energy per baryon :

$$E(n,x) = E(n,1/2) + S_v(n)(1-2x)^2 + \cdots,$$

where S_v is the density dependent bulk symmetry energy; at $n_s \simeq 0.16 \text{ fm}^{-3}$, $S_v(n_s) \equiv S_o \approx 27 - 36 \text{ MeV}$.

• Beta equilibrium :

$$\mu_e = \mu_n - \mu_p = -(\partial E / \partial x) \,.$$

• Equilibrium proton fraction :

$$\hbar c (3\pi^2 nx)^{1/3} = 4S_v(n)(1-2x) \,,$$

The density, n_c , at which $x = x_c = 1/9$, from

$$S_v(n_c) = 51.2 \left(\frac{S_o}{30 \text{ MeV}}\right) \left(\frac{n_c}{n_s}\right)^{1/3} \text{ MeV}.$$

DUrca Threshold Density-II

Urca threshold densities

q
$$1/3$$
 $2/3$ 1 $4/3$ n_c/n_s 25(9.7)5.0(3.1)2.2(1.8)1.71(1.46)

The quantity n_c/n_s was calculated for power law symmetry energies $S_v \propto n^q$ using $S_o = 30(35)$ MeV.

- The critical density is sensitive to interactions and the magnitude of the symmetry energy.
- The case q = 2/3 and $S_0 = (1/3)(\hbar^2 k_{F_s}^2/2m) \cong 12.28 \text{ MeV}$ corresponds to free non-relativistic nucleons for which $n_c/n_s \simeq 73$!

Models of Dense matter

- (a) Nuclear symmetry energy vs. density for different EOS's.
- (b) Equilibrium proton fractions including muons.
- Solid circles (squares): critical density for DUrca for electrons (muons).
- Arrows(crosses): central density of 1.4M_☉ (maximum–mass) neutron stars.

Neutrino Emissivities-I

The $\bar{\nu}$ energy emission rate from neutron beta decay:

$$\epsilon_{\beta} = \frac{2\pi}{\hbar} 2 \sum_{i} G_F^2 (1 + 3g_A)^2 \ n_1 (1 - n_2)(1 - n_3)$$
$$E_4 \ \delta^{(4)}(p_1 - p_2 - p_3 - p_4),$$

• Including neutrinos from electron capture, $\epsilon_{Urca} = 2\epsilon_{\beta}$.

$$\epsilon_{Urca} = \frac{457\pi}{10080} \frac{G_F^2 (1+3g_A^2)}{\hbar^{10} c^5} m_n m_p \mu_e (kT)^6 \Theta_t$$

= $4.00 \times 10^{27} (Y_e n/n_s)^{1/3} T_9^6 \Theta_t \,\mathrm{erg} \,\mathrm{cm}^{-3} \,\mathrm{s}^{-1} \,,$

 T_9 : temperature in units of 10^9 K, n_s : 0.16 fm⁻³, $Y_e = n_e/n$: electron fraction, and $\Theta_t = \theta(p_{Fe} + p_{Fp} - p_{Fn})$:

• If the muon Urca process can occur, we gain another factor of 2.

Neutrino Emissivities-II

Effects of strong & weak interactions

- n & p density of states at $p_{F_n,p}$ renormalized: $m_{n,p} \to m_{n,p}^*$.
- In-medium quenching of $g_A : |g_A| \to 1$
- Final state interaction modifications of weak interaction ME's: small, since n - p interactions small at momentum transfers $\sim p_F$.
- At best a reduction of $\sim 5 10$.
- Similar corrections for other ν emissivities involving nucleons.

The time for a star's center to cool:

$$\Delta t = -\int \frac{c_v}{\epsilon_{urca}} dT \simeq 30 \ T_9^{-4} \ s \,,$$

where T is the temperature and c_v is the specific heat per unit volume. Rule of thumb for surace T is $T_s/10^6$ K $\simeq (T/10^8 \text{ K})^{1/2}$.

Neutrino Emissivities-III

Name	Process	Emissivity	References
		$({\rm erg}~{\rm s}^{-1}~{\rm cm}^{-3})$	
Modifi ed Urca	$\begin{cases} n+n' \to n+p+e^- + \bar{\nu}_e \\ n'+p+e^- \to n'+n+\nu_e \end{cases}$	$\sim 10^{20} T_9^8$	Friman & Maxwell 1979
Kaon Condensate	$\begin{cases} n+K^- \to n+e^- + \bar{\nu}_e \\ n+e^- \to n+K^- + \nu_e \end{cases}$	$\sim 10^{24} T_9^6$	Brown et al., 1988
Pion Condensate	$\begin{cases} n + \pi^- \to n + e^- + \bar{\nu}_e \\ n + e^- \to n + \pi^- + \nu_e \end{cases}$	$\sim 10^{26} T_9^6$	Maxwell et al., 1977
Direct Urca	$\begin{cases} n \to p + e^- + \bar{\nu}_e \\ p + e^- \to n + \nu_e \end{cases}$	$\sim 10^{27} T_9^6$	Lattimer et al., 1991
Hyperon Urca	$\begin{cases} B_1 \to B_2 + l + \bar{\nu}_l \\ B_2 + l \to B_1 + \nu_l \end{cases}$	$\sim 10^{26} T_9^6$	Prakash et al., 1992
Quark Urca	$\begin{cases} d \to u + e^- + \bar{\nu}_e \\ u + e^- \to d + \nu_e \end{cases}$	$\sim 10^{26} \alpha_c T_9^6$	Iwamoto 1980

 T_9 : Temperature in units of 10^9 K.

Thermal Evolution

Direct versus Modified Urca

- Unlike MUrca, Durca exhibits threshold effects.
- Superfluidity abates DUrca cooling.
- Page & Applegate, ApJ 394, L17 (1992).
 - Cooper pair breaking & reformation affects both DUrca & MUrca.

Inferred Surface Temperatures

Lattimer & Prakash, Science 304, 536 (2004).

New Cold Objects

Several cases fall below the "Minimal Cooling" paradigm & point to enhanced cooling, if these objects correspond to neutron stars.

Ongoing Work

Preparing to interpret the detection of really cold objects.

Page, Prakash & Lattimer (2006).

- SN 1987A is being monitored regularly (astro-ph/0501561).
- A NS is yet to be seen!
 - If rapid cooling occurs, when can thermal emission begin?
- W/O Cooper pair breaking & formation (CBF): $t_w \propto (R_{sh}/1 \text{ km})^2 \times (1-r_G)^{-3/2} \text{ yr} \simeq 10' \text{s of yr}$ (Lattimer et al., ApJ 425 802 (1994)).

Time scales with CBF?

