Nuclear & Particle Physics of Compact Stars

Madappa Prakash Ohio University, Athens, OH

National Nuclear Physics Summer School July 24-28, 2006, Bloomington, Indiana

Charge neutral neutron-rich matter-I

- Old neutron stars are in equilibrium w.r.t. weak interactions.
- The ground state consists of strongly interacting hadrons and weakly interacting leptons generated in β -decays and inverse β -decays.
- Local charge neutrality and chemical equilibrium prevail.

First consider matter with neutrons, protons and electrons involved in

$$n (\mathrm{or} + n) \rightarrow p (\mathrm{or} + n) + e^{-} + \overline{\nu}_{e},$$

$$p (\mathrm{or} + n) + e^{-} \rightarrow n (\mathrm{or} + n) + \nu_{e}$$

• In cold catalyzed neutron star matter, neutrinos leave the system leading to

$$\widehat{\mu} = \mu_n - \mu_p = \mu_e$$
 .

(Later we will also consider the case in which neutrinos are trapped in matter, which leads instead to $\mu_n - \mu_p = \mu_e - \mu_{\nu_e}$.)

Charge neutral neutron-rich matter-II

• In beta equilibrium, one has

$$\frac{\partial}{\partial x} \left[E_b(n, x) + E_e(x) \right] = 0 \,.$$

• Charge neutrality implies that $n_e = n_p = nx$, or, $k_{F_e} = k_{F_p}$.

Combining these results, $\tilde{x}(n)$ is determined from

$$4(1-2x) \left[S_2(n) + 2S_4(n) (1-2x)^2 + \cdots \right] = \hbar c \left(3\pi^2 nx \right)^{1/3}.$$

When $S_4(n) \ll S_2(n)$, \tilde{x} is obtained from $\beta \tilde{x} - (1 - 2\tilde{x})^3 = 0$, where $\beta = 3\pi^2 n \ (\hbar c/4S_2)^3$. Analytic solution ugly!

For $u \leq 1$, $\tilde{x} \ll 1$, and to a good approximation $\tilde{x} \simeq (\beta + 6)^{-1}$.

• Notice the high sensitivity to $S_2(n)$, which favors the addition of protons to matter.

Charge neutral neutron-rich matter-III

<u>Muons in matter :</u>

When $E_{F_e} \ge m_{\mu}c^2 \sim 105$ MeV, electrons convert to muons through

 $e^- \to \mu^- + \overline{\nu}_\mu + \nu_e$.

Chemical equilibrium implies $\mu_{\mu} = \mu_e$. At threshold, $\mu_{\mu} = m_{\mu}c^2 \sim 105$ MeV.

As the proton fraction at nuclear density is small, $4S_2(u)/m_{\mu}c^2 \sim 1$. Using $S_2(u=1) \simeq 30$ MeV, threshold density is $\sim n_0 = 0.16$ fm⁻³. Above threshold,

$$\mu_{\mu} = \sqrt{k_{F_{\mu}}^2 + m_{\mu}^2 c^4} = \sqrt{(\hbar c)^2 (3\pi^2 n x_{\mu})^{2/3} + m_{\mu}^2 c^4}$$

• $x_{\mu} = n_{\mu}/n_b$:= muon fraction in matter. The new charge neutrality condition is $n_e + n_{\mu} = n_p$. Muons make $x_e = n_e/n_b$ to be lower than its value without muons.

Charge neutral neutron-rich matter-IV

Total energy density & pressure :

$$\epsilon_{tot} = \epsilon_b + \sum_{\ell=e^-,\mu^-} \epsilon_\ell \quad \& \quad P_{tot} = P_b + \sum_{\ell=e^-,\mu^-} P_\ell$$

• $\epsilon_{b,\ell}$ and $P_{b,\ell}$:= energy density and pressure of baryons (leptons).

$$\epsilon_{\ell} = 2 \int \frac{d^3k}{(2\pi)^3} \sqrt{k^2 + m_{\ell}^2} \quad \& \quad P_{\ell} = \frac{1}{3} \cdot 2 \int \frac{d^3k}{(2\pi)^3} \frac{k^2}{\sqrt{k^2 + m_{\ell}^2}}$$

$$\epsilon_b = mn_0 u + \left\{ \frac{3}{5} E_F^0 n_0 u^{5/3} + V(u) \right\} + n_0 (1 - 2x)^2 u S(u) ,$$

$$P_b = \left\{ \frac{2}{5} E_F^0 n_0 u^{5/3} + \left(u \frac{dV}{du} - V \right) \right\} + n_0 (1 - 2x)^2 u^2 \frac{dS}{du} .$$

• As $\alpha_{em} \simeq 1/137$, free gas expressions for leptons are satisfactory.

Charge neutral neutron-rich matter-V

STATE VARIABLES AT NUCLEAR DENSITY

Quantity	Nuclear matter	Stellar matter
$\begin{aligned} & \tilde{x} \\ \epsilon_b/n - m \\ & \epsilon_e/n \\ & P_b \\ & P_b \\ & P_e \\ & \mu_n - m \\ & \mu_p - m \\ & \mu_e = \mu_n - \mu_p \end{aligned}$	$egin{array}{c} 0.5 \ -16 \ 0 \ 0 \ -16 \ -16 \ -16 \ 0 \ 0 \ \end{array}$	$\begin{array}{c} 0.037\\ 9.6\\ 3.18\\ 3.5\\ 0.17\\ 35.74\\ -75.14\\ 110.88\end{array}$

Energies in MeV and pressure in MeV fm⁻³. The numerical estimates are based on an assumed symmetry energy $S_2(u) = 13u^{2/3} + 17u$, where $u = n/n_b$.

Nucleonic Equation of State

- Energy (E) & Pressure (P)vs. scaled density $(u = n/n_0)$.
- Nuclear matter equilibrium density $n_0 = 0.16 \text{ fm}^{-3}$.
- Proton fraction $x = n_p/(n_p + n_n).$
- Nuclear matter : x = 1/2.
- Neutron matter : x = 0.
- Stellar matter in β -equilibrium : $x = \tilde{x}$.

Mass Radius Relationship

Lattimer & Prakash, Science 304, 536 (2004).

Evolution of a Nascent Neutron Star

$$\frac{dP}{dr} = -G\frac{(m+4\pi r^3 P)(\rho+P/c^2)}{r(r-2Gm/c^2)}$$

$$\frac{dm}{dr} = 4\pi r^2 \rho; \qquad \frac{d\mu}{dr} = 4\pi r^2 \rho_0 e^{\Lambda}$$

$$\frac{d(N_\nu/\rho_0)}{d\tau} + e^{-\phi} \frac{\partial(L_n e^{\phi})}{\partial \mu} = S_n, \qquad L_n = 4\pi r^2 F_n$$

$$\frac{d(N_e/\rho_0)}{d\tau} = -S_n$$

$$\frac{d(N_e/\rho_0)}{d\tau} = -S_n$$

- m := enclosed grav. mass ;
- $N_{\nu} := \nu_e$ number density ; $L_n :=$ lepton luminosity
- $F_n :=$ lepton flux ;

d(E

- Metric: $ds^2 = -e^{2\phi}dt^2 + e^{2\Lambda}dr^2 + r^2d\Omega$
- t := universal coordinate time; $\tau :=$ local proper time

 $e^{\phi} = \sqrt{-g_{00}}$ $e^{2\Lambda} = 1/(1 - 2Gm/rc^2)$ $e^{-\phi} d/dt = d/d\tau$

- μ := enclosed rest mass
- $\rho :=$ mass-energy density ; $\rho_0 :=$ baryon rest mass density

 - $S_n := \nu_e$ source term

Composition of Dense Stellar Matter

• <u>Crustal Surface :</u>

electrons, nuclei, dripped neutrons, ··· set in a lattice new phases with lasagna, sphagetti, ··· like structures
Liquid (Solid?) Core :

 n, p, Δ, \cdots leptons: $e^{\pm}, \mu^{\pm}, \nu'_e s, \nu'_{\mu} s$ $\Lambda, \Sigma, \Xi, \cdots$ K^-, π^-, \cdots condensates u, d, s, \cdots quarks • Constraints : \pm baryon # conservation 1. $n_b = n_n + n_p + n_\Lambda + \cdots$: charge neutrality 2. $n_p + n_{\Sigma^+} + \cdots = n_e + n_{\mu}$: 3. $\mu_i = b_i \mu_n - q_i \mu_\ell$: energy conservation $\mu_{\Lambda} = \mu_{\Sigma^0} = \mu_{\Xi^0} = \mu_n \quad \mu_{\Sigma^-} = \mu_{\Xi^-} = \mu_n + \mu_e \quad \mu_p = \mu_{\Sigma^+} = \mu_n - \mu_e$ $\mu_{K^-} = \mu_e = \mu_\mu = \mu_n - \mu_p$ \Rightarrow $\mu_d = \mu_u + \mu_e = \mu_s = (\mu_n + \mu_e)/3$ $\mu_{\mu} = (\mu_n - 2\mu_e)/3$ 11/21

NEUTRINO TRAPPED STARS

(Newly-Born neutron stars)

- Entropy/baryon $\sim 1-2$
- Leptons/baryons $Y_{L\ell} = Y_{\ell} + Y_{\nu\ell}$, $(\ell = e, \mu \text{ and } \tau)$ conserved on dynamical timescales of collapse
- Neutrinos trapped !
- Chemical equilibrium

$$\Rightarrow \mu_i = b_i \mu_n - q_i (\mu_\ell - \mu_{\nu\ell})$$

 b_i : baryon #

 q_i : baryon charge

 $\mu_{\nu\ell}$: neutrino chemical potential

• Collapse calculations

$$\Rightarrow Y_{Le} = Y_e + Y_{\nu_e} \simeq 0.4$$
$$Y_{L\mu} = Y_{\mu} + Y_{\nu_{\mu}} \simeq 0.0$$

Prakash et al., Phys. Rep. 280, 1 (1997).

Why Neutrinos Get Trapped

• Roughly, the scattering mean free path of ν 's in dilute matter is

$$\lambda = \left(n_n G_F^2 E_\nu^2\right)^{-1}$$

$$\simeq 2 \times 10^5 \left(\frac{\text{MeV}}{E_\nu}\right)^2 \text{ cm} \quad \text{for } n_n = 0.16 \text{ fm}^{-3}$$

For $E_{\nu} \sim 200 \text{ MeV}$, Mean free path $\lambda \simeq 5 \text{ cm} \ll R \sim (10 - 100) \text{ km}$

• Effects of degeneracy (Pauli exclusion) and interactions increase λ by an order of magnitude and are important, but affect trapping only quantitatively.

• Even the elusive neutrinos are trapped in matter, albeit transiently, in the supernova environment!

Neutrino Trapping in Hyperonic Matter

 $npe^-\mu^-$: Trapped ν 's decrease the maximum mass

 $npHe^-\mu^-$: Trapped ν 's increase the maximum mass

 ν -trapping delays the appearence of *H*'s till larger densities are reached

Prakash et al., Phys. Rep. 280, 1 (1997).

Neutrino Trapping in Quark Matter

- Dark portions show mixed phase regions
- ν -free stars with s = 2 have smaller maxium masses than those with s = 0
- With ν trapping a range of masses are metastable

Steiner, Prakash & Lattimer, Phys. Lett. B486, 239 (2000).

Neutrino Trapping & Metastability

If the initial protoneutron star maximum mass is greater than that of the final configuration, collapse to a black hole is inevitable.

Ellis, Lattimer & Prakash, Comm. Nucl. & Part. Phys. 22, 63 (1996).

Metastability

- 1. Appearance of hyperons, bosons and/or quarks is delayed to higher density in neutrino-trapped (lepton-rich) matter.
- 2. Nascent neutron stars, with negatively charged strongly interacting particles, have larger maximum masses than their cold catalyzed counterparts; a reversal in behavior from matter containing only neutrons, protons and leptons.
- 3. Above permits existence of metastable young stars that could collapse to black holes during deleptonization.
- 4. In all cases, effects of entropy (of order 1 or 2) on the maximum mass are small in comparison to effects of neutrino trapping.

Prakash et al., Phys. Rep. 280, 1 (1997).

Evolution of Matter with Quarks

- As v's leave, the central density & mass of nucleons-only stars stabilize
- Massive enough stars with quarks end up as black holes upon deleptonization

Pons, Steiner, Prakash & Lattimer, Phys. Rev. Lett. 86, 10 (2001).

18/21

Signals in Terrestrial Detectors

(Bare-Bone Approach)

$$\frac{dN}{dt} = \left(\frac{R_{\nu}^{\infty}}{D}\right)^2 \frac{c\sigma_0 n_p}{8\pi(\hbar c)^3} \mathcal{M} \int_{E_{th}}^{\infty} E_{\nu}^4 f(E_{\nu}, T_{\nu}^{\infty}) W(E_{\nu}) dE_{\nu}$$

► $R_{\nu}^{\infty} = e^{-\phi_s} R_{\nu}$: Radius of the neutrinosphere

- \blacktriangleright D: Distance to supernova
- ► $\sigma_0 = 9.3 \times 10^{-44} \text{ cm}^2$: $\bar{\nu}_e p$ crossection
- ▶ $n_p = 6.7 \times 10^{28}$: Free protons per kiloton of water
- \mathcal{M} : Detector mass in kilotons
- ► $T_{\nu}^{\infty} = e^{\phi_s} T_{\nu}$: Neutrino temperature at freezeout

•
$$e^{\phi_s} = \left(1 - \frac{2GM_G}{R_{\nu}c^2}\right)^{1/2}$$
: Redshift factor

• $E_{th} \& W(E_{\nu})$: Detector threshold & efficiency

Neutrino Luminosities

Total Luminosity (10⁵¹ erg/s)

- Early detectors lacked sensitivity to test if SN 1987A ended up as a black hole.
- Current & future detectors can do better in the case of a future event.
- Prakash et al., Ann. Rev. Nucl. & Part. Sci. 51, 295 (2001).
- Future work:
 Luminosities in different *v*-flavors.

Time to Instability

Observation of metastability would signal the presence of exotica
 Frequency of galactic SN: 1 per (30-50) yr

