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Outline

� What are Ultra-cold Neutrons (UCN)?

� How are UCN useful?
� Neutron physics with UCN

� Neutron beta-decay
� Neutron EDM search
� n-nbar oscillation

� How to make a lot of them?
� Superthermal UCN production

� Solid D2
� Solid O2



UCN

� E < 335 neV (Ni58)  
� T < 4 mK
� Velocity  < 8m/s
� λ > 500 Å
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Why UCN?
UCN have advantages over higher energy neutrons (cold 

neutrons): 

� UCN can be confined in a trap
� Copper wall ~ B=2.8 T ~ h=1.7m

� Low background

� Long storage time
� UCN can be stored up to the β-decay lifetime, a relatively long 

coherence time of measurements (for particle physics experiments).

� 100% neutron polarization
� Provide motivation to shift from cold neutron beams to UCN 

for β-decay angular correlation experiments and EDM 
experiments.

Clean, high precision experiments with reduced, well 
controlled systematic effects.



Neutron β-decay

� Cold Neutron beam experiments:
� Absolute measurements of the neutron number and the 

decay particle flux.

� Bottled UCN:                          
� Ratio of the neutrons stored for different periods. It is a 

relative measurement.
� Material bottle -- Mampe (887.6 ± 3 s)

� Wall loss depends strongly on the UCN spectrum.
� Systematically limited.

� Magnetic bottle -- hexapole bottle (876.7 ± 10 s), NIST 
bottle.
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Neutron measurements which address 
fundamental particle physics issues

� Neutron β-decay lifetime and angular correlations
test the V-A theory and place direct constraints on extensions 
to charged current sector of the standard model.

� Permanent electric dipole moment (EDM) search
T reversal symmetry & CP violation extensions to the standard 
model.

� N-Nbar oscillation search
place useful limits on (B-L) violating processes.

Motivated by the observed baryon asymmetry of the universe.



n→nbar (∆B=2) Theoretical 
Motivations

� Baryon Asymmetry of the Universe (BAU)
� Sakharov Criteria

� Baryon Number Violation
� CP & C violation (EDM search)
� Departure from Thermal Equilibrium

� Unification of particles and interactions.
� Processes predicted by some GUT models.
� Proton decay. ∆B=1  (= ∆L)

� In nucleon disappearance, the conservation of angular 
momentum leads to the selection rule:
� ∆B=± ∆L  or | ∆(B-L)|=0,2
� In SM, ∆(B-L)=0 always.
� ∆(B-L)≠0 → ∆B=� ∆L  or ∆B=2 or ∆L=2 
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n→nbar Oscillation
� Schrödinger equation

� Transition Probability: (if ωt <<1)

Unkown mixing interaction
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Suppression of n→nbar transition
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� Free neutron in a magnetic field

� Under earth field (0.5 gauss), 2µHB=6×10-12eV
� with   τfree>1.2×108 s

� To measure τfree>1.2×108 s, the magnetic field has to be as small as 
0.5×10-11gauss!

� For the neutron time-in-flight t=0.1s, 
� B < 5 mgauss.
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M. Baldo-Ceolin, et al., Z. Phys. C 63 (1994) 409.

Y. Kamyshkov
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Figure of Merit
� Probability of n→nbar event in free neutron 

exp:

� Probability of UCn →UCnbar event:
� Every wall collision destroy the phase coherence 

and reset the experiment.
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Technical Challenges with 
Experiments using UCN:

Need more UCN flux!



Neutron 
Cooling

Masuda, Proceedings of the
3rd UCN workshop



Superthermal Process

� Cold neutrons downscatter in the solid, giving up 
almost all their energy, becoming UCN.

� UCN upscattering (the reverse process) is 
suppressed by cooling the moderator to low 
temperatures.

R. Golub and J. M. Pendlebury, Phys. Lett, A53, 133 (1975)



Dynamics of UCN Production --
Defeat thermal equilibrium

● Lifetime of UCN in the source material is a critical parameter in the 
establishment of large UCN densities.

● Extract UCN out of the source before it is thermalized ⇒ Spallation N 
source + Seperation of the source and the storage + a UCN Valve



Superfluid 4He � UCN production
� Isotropic superfluid 4He

� Energy excitation is isotropic.
� Neutron scattering is isotropic.

� UCN can accumulate until the production rate = loss rate

Landau-Feynman's dispersio
curve for superfluid 4He

Kinetic energy of a 
free neutron

11 K
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� UCN production rate:                           UCN/cm3Hsec

� UCN density:

� The figure of merit:
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Isotop σcoh σinc σa σs/σa purity Debye T
2D 5.59 2.04 0.000519 1.47×104 99.82 110
4He 1.13 0 0 ∞ 20
15N 5.23 0.0005 0.000024 2.1×105 99.9999 80
16O 4.23 0 0.00010 2.2×104 99.95 104

208Pb 11.7 0 0.00049 2.38×104 99.93 105



Solid Deuterium �UCN production (I)
� Incoherent contribution ( σ inc= 2.04 barn)           

( due to the difference of singlet and triplet scattering)      

� No momentum delta function in the scattering cross section.

� All the Cold Neutron with energy smaller than the Debye T could    
become UCN through incoherent phonon creation.

( )ωωZd
q
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Solid D2 � UCN production (II)
� Coherent contribution ( σ coh= 5.59 barn)

� Momentum and energy conservations are still strictly hold.
� The anisotropic dispersion relation broadens the range of 

conditions for single phonon creation process. 
� In a cold neutron flux with a continuous spectrum, more 

neutrons could  participate in the UCN production.

(1,1.73,0)

(1,1,0)

(1,0,0)



Solid Deuterium - UCN Loss 

Solid D2

Storage 
bottle

Nuclear absorption by S-D2

τ ~ 150 msec
Nuclear absorption by Hydrogen 
Impurities, τ ~ 150 msec/0.2% of H

UCN upscattering by phonons
τ ~ 150 msec at T = 5K UCN upscattering by para-D2

τ ~ 150 msec/1% of para-D2



LANL UCN prototype source
(2000)UCN lifetime in S-D2

C. Morris et al., Phy. Rev. Lett. 89, 272501 (2002)

� Superthermal temperature dependence.
� Para-D2 upscattering time: 1.2 ± 0.2 ms.



LANL UCN prototype source
(2000)Volume Scan

� UCN yield saturates above 200 c.c ⇒ mean free path = 8 
cm
Resulted from UCN incoherent elastic scattering (random 
walk).

� No additional scattering due to the finite crystal effects.



UCN Production Measurement --Bottle 
Technique LANL UCN prototype source



Los Alamos s-D2 UCN Prototype 
Source

World record

C. Morris et al., Phy. Rev. Lett. 89, 272501 (2002)

� Source has para-D2: 4%
� Bottled UCN density: 100 UCN/c.c. in a S.S. bottle 1 m 

away from the source. (world record)
� UCN Flux = 3.8×104 UCN/s
� Noticeable beam heating on solid deuterium.



Source Candidates

10599.932.4e+44.9e-4011.7208Pb
10499.952.2e+41.0e-404.2316O
8099.99992.1e+52.4e-55e-45.2315N
20∞001.134He
11099.821.47e+45.2e-42.045.592D
TDebyepurityσtot/ σabsσabsσincσcohIsotope

Too Expensive !Too Heavy !



Solid Oxygen as a UCN Source

� Electronic spin S=1 in O2 molecules.
� Nuclear spin = 0 in 8O
� Anti-ferromagnetic ordering

α-phase, T < 24K.

UCN Production in S-O2
� Produce UCN through magnon 

excitations.
� Magnetic scattering length ~ 5.4 fm. 

� Null incoherent scattering length.
� Small nuclear absorption probability.

P.W. Stephens and C.F. Majkrzak, Phys. Rev. B 33, 1 (1986)

⇒ A very large source 
possible.



Neutron Scattering in Solid O2

� Spin(n) -Spin(e) coupling
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Elastic Bragg + Magnon Scatt. + Magneto-vibrational Scatt. + 
both magnon, phonon



Neutron-Magnon Scattering in S-O2

� AF magnon: scattering 
amplitude prefers low 
momentum transfers.

� Needs a colder neutron 
spectrum for the optimum 
UCN production.

� Magnon production 
energy gap ~ 0.8meV
� Magnons are partially 

frozen at T < 8K.
� Significantly reduce the 

UCN upscattering rate. 

0.8meV

Density of States (Magnon)



C.-Y. Liu and A.R. Young

UCN production in Solid Oxygen
� Production rate

� P = 2.7 × 10-8 Φ0 (30K CN in S-O2)

� P = 3.0 × 10-8 Φ0 (15K CN in S-O2)

� P = 1.5 × 10-8 Φ0 (30K CN in S-D2)

� Gain ~ 2 relative to S-D2

� Lifetime
� 375 ms in S-O2

� 40 ms in S-D2

� Gain ~ 10
� Volume gain, (l)n, n= 1-3

� lucn = 380 cm in S-O2

� lucn = 8 cm in S-D2

� Gain ~ 50 - 105 Compared with S-D2, 
Gain > 1000 is possible !



Low Energy Neutron Source (LENS) at 
IUCF (floor plan-2007)

SANS

PSI-Ψ
Radiog.

NREP

R.F. Systems

Accelerator

TMR



Target Moderator Reflector 
(TMR) LENS, IUCF

Borex/PE/Expoxy/Pb 
complex

Neutron Beam Line

Water Reflector
50 cm dia.

Water-cooled Be Target
2mm thick
(28kW cooling power)

Cryogenic (Methane)
Moderator (22K)
12×12×1 cm3

~ 3m



Target/Moderator/Reflector (TMR) Assembly

PSI

Moderator studies,
Radiography, etc.

SANS

Thin beryllium 
production target Methane moderator Outer shielding � lead 

and poly layersinner reflector � water

LENS, IUCF



Neutron Production at LENS
Neutron Source: 
based on low-energy (p,n) and (p,pn) 
reactions (Ep<14MeV) in Be. Yield ~ 0.01 n/p @13 MeV

~ 0.002 n/p @ 7MeV

p+Be Neutron Production
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Time line:
� Phase I  (Early 2005: 7MeV,
10mA, 1% DF; 1012 n/s).

� Phase II (Fall 2006: 7Mev, 
50mA, 5% DF; 2x1013 n/s)

� Eventual power (13MeV, 
50mA, 5% DF; 1014 n/s)

Phase II   13 MeV  4x1013 n/mC

Phase I   7 MeV  1x1013 n/mC
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Neutron Flux from 22K methane mod
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Neutron Energy (

MCNP prediction

LENS produces its first 
“cold” neutron beam

Mark Leuschner, et. al.
April 26, 2005

• methane moderator (1 cm 
thick, 3.6 K.)

• two component spectrum 
(25 K, 157 K.)

• The moderator is very thin, so 
the neutrons that pass through 
it do not quite reach thermal 
equilibrium.

• Spin temperature is too high.
(YunChang Shin)

Measurement



UCN source at LENS
� Features

� (p,n) reactions make fewer fast neutrons and gammas in source ⇒
might be able to run CW. (Has the benefit of a reactor source)

� LENS will have a variable pulse width (from  <5 µs to 1.0 ms or more).
� In long-pulse mode, LENS will have a time-averaged cold neutron 

intensity comparable to an existing national user facility (IPNS).

� Cold moderators (4~22K)
� Rad damage from source is low for LENS 
� Kr-doped CH4 (free rotor), 2-methyl-pyridine (CH3 free rotor), 

� UCN flux estimate (in S-O2)
� Cold neutron flux: 2×1010 CN/cm2-s (Patrick McChesney)

(proton: 13 MeV, 2.5mA(avg), with 4K poly moderator, 
TCN=35K)

� UCN density: 300 UCN/cc, UCN fluence: > 3 ×105 UCN/s 
(with 500 cc S-O2)

� Heat load ~ 1 W



Challenges

� 1.8 K cryogenic.
� Larger gamma heating and 

smaller thermal conductivity 
than S-D2 ⇒ challenges on cryogenic engineering

− Requires a fast thermal break (50K to 2K) over a few cm. 

� Shortened UCN mean free path 
� Polycrystalline sample formation ⇒ Effects on UCN mean free path?
� Ozone formation ⇒ additional incoherent scattering, resulting in a 

reduced mean free path. (Low radiation level at LENS helps.)



Probe the Magnon Mechanism using 
a B field

C. Uyeda at. al., J. Phys. Soc. Jpn. 54, 1107 (1985)
� An external magnetic field to perturb the magnon dispersion curve

� Change the density of states.
� Optimize UCN production.

� Spin flop transition around 7 Tesla ⇒ AF magnons turned off.
� Definitive demonstration of the magnon mechanism.



Experiments of UCN Production from S-O2

� PSI, Switzerland
� FunSpin beamline in SINQ

ΦCN = (4.5±1.0)×107/cm2-s-mA 
� with 1.2mA on SINQ target
� PSI UCN group has demonstrated UCN production in s-D2.
� UCN count rate in the detector of 0.4/s, with a S/N ratio of 40 to 1.
F. Atchison, et al., Phys. Rev. C 71, 054601 (2005)

� Similar count rate is expected using solid oxygen
� assuming the UCN extraction is not hindered by the very different 

physical properties of oxygen solid (compared with s-D2).



Cold Neutron Transmission (TOF)

� Flight path =2.83m.
� Neutron Chopper.
� Scattering 

probability
� I0(E)-I(E)/I0(E)

� Features:
� Bragg edges
� Additional Bragg 

peak in alpha 
phase. (indicate 
the presence of a 
magnetic 
structure.)



UCN Production in Solid O2

� No superthermal 
temperature 
dependence.

� Indicates unknown 
source of UCN loss.

� UCN yield is correlated 
with how the crystal is 
prepared.

� The UCN yield (best 
number) is ~ 3 times 
less than s-D2.

� A peak in the α-β phase 
transition. (critical 
scattering?)



UCN Production in D2 and CD4

� From D2 and CD4.
� Signature temperature dependence of a superthermal 

source.



UCN Production vs. 
CN Transmission

Material: solid O2

� Net UCN yield is strongly correlated 
with CN transmission data.



Conclusions
� Magnons in the AF phase of S-O2 offer an additional 

channel for inelastic neutron scattering.
� UCN production rate in S-O2~ (1-2) × in S-D2.
� UCN lifetime in S-O2 ~ 10 × in S-D2.
� Larger source possible. (at least 10 × S-D2)
� UCN current output from S-O2 (at least) 100 × from S-D2

� UCN Program at IUCF
� LENS provides a unique opportunity to study and develop a S-

O2 based UCN source.
� Currently, we are setting up to study crystal growth. (YunChang

Shin, John Ullman)
� Planning to study magnetic field influence on the crystal 

preparation, energy dispersion curves, etc.. 

� Broader impacts
� A high UCN flux will make a UCN nnbar experiment possible.
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