Baryogenesis

- Plausibility Argument (GUTS Baryogenesis)
 - Consider very heavy boson X ($M_X \sim 10^{19} \text{ GeV}$)
 - Baryon number violation:

$\underline{X} \rightarrow qq$	$\underline{X} \rightarrow ql_{-}$
$X \to \overline{q} \overline{q}$	$X \to \overline{q}l$

• C & CP violation

$$\begin{split} \Gamma_{X \to qq} &= (1 + \Delta_q) \Gamma_q; \quad \Gamma_{X \to ql} = (1 - \Delta_l) \Gamma_l \\ \Gamma_{\overline{X} \to \overline{qq}} &= (1 - \Delta_q) \Gamma_q; \quad \Gamma_{\overline{X} \to \overline{ql}} = (1 + \Delta_l) \Gamma_l \\ & \text{but} \quad \Gamma_X^{Tot} = \Gamma_{\overline{X}}^{Tot} \quad \text{(CPT conservation)} \end{split}$$

Out of Thermal Equilibrium

If in Equilibrium then the reverse reactions (e.g. $qq \rightarrow X$, $\overline{q}\overline{q} \rightarrow \overline{X}$) will smooth out any matter/antimatter excess

Origin of EDMs

- Standard Model EDMs are due to CP violation in the quark weak mixing matrix
 CKM (e.g. the K⁰/B⁰-system) but...
 - of and quark EDM's and range at first and an
 - e⁻ and quark EDM's are zero at first order
 - Need at least two "loops" to get EDM's (electron actually requires 4 loops!)
 - Thus EDM's are VERY small in standard model

Neutron EDM in Standard Model is ~ 10⁻³² e-cm (=10⁻¹⁹ e-fm)

Electron EDM in Standard Model is < 10⁻⁴⁰ e-cm

Origin of EDMs

• Quark EDMs lead to hadronic EDMs (neutrons or diamagnetic atoms)

All e⁻ paired-up

• Electron EDMs lead to atomic EDMs in paramagnetic atoms

One unpaired e⁻

Nuclear searches are in hadrons

Origin of Hadronic EDMs

- Hadronic (strongly interacting particles) EDMs are from
 - θ_{QCD} (a special parameter in Quantum Chromodynamics QCD)
 - or from the quarks themselves

EDM from θ_{QCD}

• θ_{QCD} results from CP-odd term is L_{QCD}

$$\mathcal{L}_{\rm QCD} = -\theta \left(\frac{\alpha_{\rm s}}{8\pi}\right) \widetilde{G}_{\rm a}^{\mu\nu} G_{\mu\nu}^{\rm a}$$

- θ_{QCD} should be naturally about ~ 1
- This gives an "effective" neutron EDM of

 $\lesssim \gamma$

n

n

$$d_n = \frac{g_{\pi NN}}{4\pi^2} \left(\frac{e}{m_p f_{\pi}}\right) \ln\left(\frac{m_{\rho}}{m_{\pi}}\right) \left(\frac{m_u m_d}{m_u + m_d}\right) \boldsymbol{\Theta} \approx (-10^{-15}) \boldsymbol{\Theta} \, \boldsymbol{e} - \boldsymbol{cm}$$

but $d_n^{exp} < 10^{-25} \text{ e} - \text{cm}$ $\therefore \theta < 10^{-10}$ Why so small??

EDM from θ_{QCD}

- This is the Strong CP problem in QCD
- Small θ_{QCD} does not provide any new symmetry for L_{QCD}
 - Popular solution is "axions" (Peccei-Quinn symmetry) new term in $L_{\rm QCD}$
 - No Axions observed yet
 - Extra dimensions might suppress θ_{QCD} (Harnik et al arXiv:hep-ph/0411132)
 - Remains an unsolved theoretical "problem"

Hadronic EDM from Quarks

Quark EDM contributes via

Physics Beyond the Standard Model

- New physics (e.g. SuperSymmety = SUSY) has additional CP violating phases in added couplings
 - New phases: (ϕ_{CP}) should be ~ 1 (why not?)
- Contributions to EDMs depends on masses of new particles $d_n \propto \frac{\sin \phi_{CP}}{M_{SUSY}^2}$
 - In MSSM (Minimal Supersymmetric Standard Model) $d_n \sim \left(\frac{200 \text{ GeV}}{M_{\text{SUSV}}}\right)^2 \times 10^{-25} \text{ e-cm}$

Possible impacts of non-zero EDMs

- Must be new Physics (at proposed sensitivities)
- Sharply constrains models beyond the Standard Model (especially with LHC data) Large Hadron Collider
- May account for matterantimatter asymmetry of the universe (via ElectroWeak Baryogenesis)

 $M_{SUSY} = 500 \text{GeV}$ 0.4
en
199 Hg
-0.2
-0.4
-0.15-0.1-0.05
0
0.05
0.1
0.15 ϕ_{μ}/π

From Pospelov et al for CMSSM

EDM Measurements

particle	Present Limit (90% CL)	Laboratory	Possible Sensitivity	Standard Model
	(e-cm)		(e-cm)	(e-cm)
e⁻ (TI)	1.6 x 10 ⁻²⁷	Berkeley		
e⁻ (PbO)		Yale	10 ⁻²⁹	<10 ⁻⁴⁰
e⁻ (YbF)		Sussex	10 ⁻²⁹	
e⁻ (GGG)		LANL/Indiana	10 ⁻³⁰	
μ	9.3 x 10 ⁻¹⁹	CERN		<10 ⁻³⁶
μ		BNL	<10 ⁻²⁴	
n	6.3 x 10 ⁻²⁶	ILL	1.5 x 10 ⁻²⁶	
n		ILL	~ 2 x 10 ⁻²⁸	~10 ⁻³²
n		PSI	~ 7 x 10 ⁻²⁸	
n		SNS	< 1 x 10 ⁻²⁸	
¹⁹⁹ Hg	1.9 x 10 ⁻²⁷	Seattle	5 x 10 ⁻²⁸	~10 ⁻³³
¹²⁹ Xe		Princeton	10 ⁻³¹	~10 ⁻³⁴
²²⁵ Ra		Argonne	10 ⁻²⁸	
²²³ Rn		TRIUMF	1 x 10 ⁻²⁸	
d		COSY/JPARC?	<10 ⁻²⁷	

New Nuclear EDM Techniques

- Accelerator production of radioactive diamagnetic atoms (probes hadronic EDMs)
- Charged particles in storage rings
- Superthermal sources of Ultra-Cold Neutrons

Enhanced Atomic EDM via Octupole deformations

EDM in Rn

Spokesmen: Timothy Chupp² and Carl Svensson¹

Sarah Nuss-Warren², Eric Tardiff², Kevin Coulter², Wolfgang Lorenzon², Timothy Chupp²

John Behr⁴, Matt Pearson⁴, Peter Jackson⁴, Mike Hayden³, Carl Svensson¹ University of Guelph¹, University of Michigan², Simon Fraser University³, TRIUMF⁴

EDM with Trapped Radium Atoms

Irshad Ahmad, Roy J. Holt, Zheng-Tian Lu, Elaine C. Schulte, Physics Division, Argonne National Laboratory

Advantages of an EDM measurement on ²²⁵Ra atoms in a trap

- In ²²⁵Ra the EDM effect is enhanced by two orders of magnitude due to nuclear quadrupole and octupole deformation.
- Trap allows a long coherence time (~ 300 s).
- Cold atoms result in a negligible "v x E" systematic effect.
- Trap allows the efficient use of the rare and radioactive ²²⁵Ra atoms.
- Small sample in an UHV allows a high electric field (> 100 kV/cm).

Deuteron (and Muon) EDM in Storage Ring

BNL, BU, Cornell, Illinois, Indiana, Massachusetts, Oklahoma & Foreign Institutions

New Techniques for n-EDM:

- Use Superthermal (non-equilibrium) system to produce UCN
 - Superfluid 4He can yield ~1000 more UCN than conventional UCN source

8.9 A incident n

becomes UCN ~

- Higher Electric fields in ⁴He
 - Breakdown voltage may be 10x vacuum breakdown
- ³He comagnetometer measures B-field at same location as neutrons
 - Very small amount of ³He in ⁴He
 - Use SQUIDs to measure ³He precession calibrates B-field since $\omega_3 \propto |\vec{B}|$
- $\vec{n} + {}^{3}\vec{H}e \Rightarrow t + p$ has $\sigma_{\uparrow\downarrow} >> \sigma_{\uparrow\uparrow}$ Detect capture via scintillation of ⁴He
 - - Same technique as NIST LHe τ_n measurement (UV photons converted to visible in tetraphenyl butadiene - TPB)
 - Measures difference of ω_n and ω_3
- "Dressed" spin technique suppresses sensitivity to fluctuations in Bfield

Careful magnetometry is essential !

New Technique for n-EDM

- Inject polarized neutron & polarized ³He
- 2. Rotate both spins by 90°
- Measure n+³He capture vs. time

(note: $\sigma_{\downarrow\uparrow} \rightarrow \sigma_{\uparrow\uparrow}$)

4. Flip E-field direction

³He functions as "co-magnetometer"

EDM Statistical Sensitivity

	EDM @	EDM @		
	ILL	SNS		
N _{UCN}	1.3 × 10 ⁴	2 x 10 ⁶		
Ē	10 kV/cm	50 kV/cm		
T _m	130 s	500 s		
m (cycles/day)	270	50		
σ _d (e-cm)/day	3 x 10 ⁻²⁵	3 x 10 ⁻²⁷		
SNR (signal noise ratio)	1	1		
$\sigma_{d} \cong \frac{(1+1/SNR)\hbar}{2 \cdot \vec{r} \cdot \vec{r}}$				
$Z E I_m \sqrt{mN}_{UCN}$				

Systematic Effects in EDM

- Nonuniformity of B-field and E-field
 - Comagnetometer monitors B-field variations
- Leakage currents from Electric Field
 - These produce B-fields that change with Efield (must be less than picoAmps)
- Gravitational offset of n and ³He (~ 10⁻²⁹ ecm)
- $\vec{v} \times \vec{E}$ effects are the largest sources of systematic error in present ILL exp. - $\vec{B}_E = \vec{v} \times \vec{E} \rightarrow$ changes $\vec{\mu}$ precession frequency
 - Geometric phase due to B gradients

Systematic Controls in new EDM experiment

- Highly uniform E and B fields
 - $Cos\theta$ coil in Ferromagnetic shield
 - Kerr effect measurement of E-field
- Two cells with opposite E-field
- Ability to vary influence of B_0 field
 - via dressed spins
- Control of central temperature
 - Can vary ³He diffusion

Geometric Phase

- Path-dependent phase (no \hbar)
 - E.g. Parallel transport of vector on sphere
- In Quantum Mechanics often called Berry's phase

False EDM from Geometric phase

- Pendlebury et al PRA 70 032102 (04)
- Lamoreaux and Golub nucl-ex/0407005
- Geometric phase gives false EDM's that depend strongly on radial B fields perpendicular to B₀
 - These result from dB_0/dz

Geometric phase contributions

- Gradients and vxE field gives dfalse
- Impacts neutron and ³He
- Magnetometers (¹⁹⁹Hg & ³He) pick up phase at different rate due to higher velocities
 - Can be reduced by frequent collisions with buffer gas or phonons

• if collision rate
$$\frac{\mathbf{V}_{rms}}{\lambda_{mfp}} >> \omega_{L}$$

Then GP doesn't have time to build up

Geometric phase with $B_E = v \times E$ field

v x E field changes sign with neutron direction Radial B-field due to gradient

• Motion in B – field shifts the precession frequency – ω_0 :

$$\Delta \omega \cong \frac{\gamma_n^2 \left(\mathbf{B}_\perp \mp (\vec{\mathbf{v}}_n \times \vec{\mathbf{E}})/c^2 \right)^2}{4 \left(\omega_0 \mp \mathbf{v}_n / \mathbf{R} \right)}$$

- \mp due to different trajectories
- Does NOT average to 0
- Gives $\Delta \omega$ that depends on direction of $\vec{E} \Rightarrow$ false EDM

Dressed Spins

- By applying a strong non-resonant RF field, the gyromagnetic ratios can be modified or "dressed" $\gamma' = \gamma J_o(\gamma B_{rf}/\omega_{rf})$
- For a particular value of the dressing field, the neutron and ³He magnetic moments are equal
- Can tune the dressing parameter until the relative precession is zero. Measure this parameter vs. direction of E

n-EDM Design Concept

EDM Experiment Section View

Measurement Cell

Neutrons come from at Oak Ridge National Laboratory

Spallation Neutron Source (SNS) at ORNL

1 GeV proton beam with 1.4 MW on spallation target

Accumulator Ring

Target

(Oak Ridge)

(Brookhaven)

Linac (Los Alamos and Jefferson)

(Argonne and Oak Ridge)

0000

Front-End Systems

(Lawrence Berkeley)

Spallation Neutron Source Primary Parameters			
Proton beam power on target	1.4 MW		
Proton beam kinetic energy on target	1.0 GeV		
Average beam current on target	1.4 mA		
Pulse repetition rate	60 Hz		
Protons per pulse on target	1.5x10 ¹⁴ protons		
Charge per pulse on target	24 uC		
Energy per pulse on target	24 kJ		
Proton pulse length on target	695 ns		
Ion type (Front end, Linac, HEBT)	H minus		
Average linac macropulse H- current	26 mA		
Linac beam macropulse duty factor	6 %		
Front end length	7.5 m		
Linac length	331 m		
HEBT length	170 m		
Ring circumference	248 m		
RTBT length	150 m		
Ion type (Ring, RTBT, Target)	proton		
Ring filling time	1.0 ms		
Ring revolution frequency	1.058 MHz		
Number of injected turns	1060		
Ring filling fraction	68 %		
Ring extraction beam gap	250 ns		
Maximum uncontrolled beam loss	1 W/m		
Target material	Hg		
Number of ambient / cold moderators	1/3		
Number of neutron beam shutters	18		
Initial number of instruments	5		

SNS Status

- SNS completed:
- FNPB Beam line completed: 2007
- Full design flux: 2008
- SNS Total Project Cost:
- 2007 2008 1.411B\$

2006

Solution SNS Target Hall 18 neutron

18 neutron beam ports with 1 for **Nuclear Physics**

EDM Experiment at SNS

Funding Status of US n-EDM

- 2002: Preproposal submitted to DOE: 2003 DOE/NSF subcommittee review
 - Established DOE "mission need"
- 2003: Requested R&D funding for FY03-04
 - Received 650k\$ resolved key feasibility issues
- 2004: Requested R&D funds for FY05-06
 - Request = 1.65M\$ "... we'll get back to you"
- 2005: "Internal" Cost and Schedule review
 - Total Cost of experiment = 16+/-2 M\$ (~5M\$ NSF)
 - Schedule of experiment: commissioning in 2012
- 11/05: n-EDM receives "Critical Decision O" (CDO)

Other New EDM experiments

- CryoEDM at ILL
 - Similar to new US experiment
 - Does not use polarized 3He
 - Sensitivity of 2x10⁻²⁸ e-cm
 - First phase of experiment underway
- EDM at PSI based on SD₂
 - Similar technique to present ILL exp.
 - But no comagnetometer
 - Sensitivity of 7x10⁻²⁸ e-cm
 - SD2 source being constructed

New ILL EDM Experiment

- · Similar to new US experiment
- No ³He (only SQUIDs)

New EDM experiment at PSI

PSI UCN Facility (using Solid D₂ from Los Alamos-Caltech-... collaboration)

PSI EDM

- Based on present ILL experiment
- No "Comagnetometer"
- Uses UCN in adjacent cell with $|\vec{E}| = 0$

New n-EDM Sensitivity

Summary

- Thanks for Invite!
- Searches for physics beyond the standard model are key part of Nuclear Physics
- Precision measurements at low energy can access very high energy physics
- Physics reach of EDM measurements remains strong (even after Large Hadron Collider)
 - New sources of CP violation possible in SUSY