Muon Decay Distributions $\mu \rightarrow e v_{\mu} v_{e}$

- Energy dependence
- Angular dependence
- Called Michel parameters

$$\frac{dN_e}{d\Omega_e dE_e} \propto x^2 \left[3 - 3x + \frac{2}{3}\rho(4x - 3) + 3\eta x_o \left(\frac{1 - x}{x}\right) + P_\mu \xi \cos \theta_e \left(1 - x + \frac{2}{3}\delta(4x - 3)\right) \right]$$

$$x = \frac{E_e}{E_e^{\max}}$$
Spectral shape in x, $\cos \theta_e$ is characterized in terms of four parameters -- ρ , η , ξ , δ

$$P_\mu$$
 is the muon polarization
D. Koetke (TWLST)

Useful References

- http://www.krl.caltech.edu/ucn/
- "Fundamental neutron physics", J.S. Nico and W.M. Snow, <u>Ann. Rev. Nucl. Part. Sci. 55, 27 (2005)</u>.
- "Low energy tests of the weak interaction", J. Erler and M.J. Ramsey-Musolf, <u>Prog. Part. Nucl. Phys. 54, 351 (2005)</u>
- "Demonstration of a solid deuterium source of ultracold neutrons",
 A. Saunders *et al.*, <u>Phys. Lett. B 593, 55 (2004)</u>
- "Measurement of electron backscattering in the energy range of neutron beta decay", J.W. Martin *et al.*, <u>Phys. Rev. C 68, 055503 (2003)</u>.
- "Measurements of ultracold neutron lifetimes in solid deuterium", C.L. Morris *et al.*, <u>Phys. Rev. Lett. 89, 272501 (2002)</u>.

Ultra-Cold Neutrons: UCN

Can we make more UCN?

Higher Density UCN Sources

Use non-equilibrium system

(aka Superthermal)

- Superfluid ⁴He
 (T<1K)
 - 11K (9Å) incident n produces phonon & becomes UCN

Very few 11K phonons if T<1K

... minimal upscattering

– Solid deuterium (SD₂) Gollub & Boning(83)

- Small absorption probability
- Faster UCN production
- Small Upscattering if T < 6K</p>

Cold Neutron

Phonon

New UCN Sources

- Superthermal ⁴He
 - Neutron lifetime experiment at National Institute of Standards and Technology (NIST) Research reactor
 - Under development for neutron electric dipole moment experiment at Spallation Neutron Source (SNS) and ILL
- Superthermal SD₂
 - Neutron EDM at Paul Scherrer Institute
 - Neutron decay correlation at LANSCE

LANSCE (Los Alamos Neutron Science CEnter)

Proton Linac (1/2 mile long) 1 mA of 0.8 GeV protons

UCN Source

High Intensity Pulsed Neutrons

 Proton-induced spallation

Proton Beam

~ 20 n'^s/incident proton

Secondary Neutrons

Neutron

High Energy Proton

Tungsten Nucleus

Target

Schematic of prototype SD₂ source

(LANL/Caltech/ILL/Kyoto/Princeton/VaTech/NCState collaboration)

First UCN detection

Proton pulse at t = 0

Bottled UCN

Detector

Measurements of Ultra Cold Neutron Lifetimes in Solid Deuterium [PRL 89,272501 (2002)]

Demonstration of a Solid Deuterium Source of Ultra-Cold Neutrons [Phys. Lett. B 593, 55 (2004)]

The Caltech UCN group

Nick Hutzler Gary Cheng Jenny Hsiao Riccardo Schmid Kevin Hickerson Junhua Yuan Brad Plaster Bob Carr Jianglai Liu Michael Woods BF

Physics with higher density UCN Sources

Macroscopic Quantum States

- Neutron decay (lifetime & correlations)
 Solid Deuterium Source
- Neutron Electric Dipole Moment (EDM)
 Superfluid He Source

Macroscopic Quantum States in a Gravity Field

1-d Schrödinger potential problem

neutron in ground state "bounces" ~ 15 μ m high

Schrodinger Equation Solutions

$$\frac{-\hbar^2}{2m_I}\frac{\partial^2\Psi}{\partial z^2} + m_G g z \Psi = E\Psi$$

- m_I is inertial, m_G is gravitational mass
- Eigenstates are Airy functions:
 ψ(z) = Αφ(z-δ)
- Eigenenergies are $E_n = \left(\frac{\hbar^2 m_G^2 g^2}{2m_I}\right)^{-\frac{1}{3}} \alpha_n = \left(0.60 \cdot 10^{-12} \text{ eV}\right) \alpha_n$
 - Where α_n are the zeros of the Airy function $-\alpha_1$ = 2.34, α_2 = 4.09, α_3 = 5.52

Neutron Energy Levels in Gravity

ILL - Nesvizhevsky, et al, Nature 2002

May allow improved tests of Gravity at short distances (need more UCN!)

Physics with quantum neutron states

• May allow a test of the weak equivalence principle

$$E_{n} = \left(\frac{m_{G}}{m_{I}}\right)^{2/3} \left(\frac{\hbar^{2}m_{I}g^{2}}{2}\right)^{1/3} \alpha_{n}$$

- May improve tests of the behavior of gravity at short distances
 - Small (but finite) extra dimensions may cause gravity to be much stronger at short distance

Behavior of gravity at short distance

Constraints on non-Newtonian gravity from the experiment on neutron quantum states in the earth's gravitational field

V V Nesvizhevsky¹ and K V Protasov²

$$\mathbf{V}_{ud} = f(\mathbf{A}, \boldsymbol{\tau}_{n}, \mathbf{RC})$$

RC = Electroweak Radiative Corrections

Reduced Background with pulsed Source of UCN

Best previous A-correlation experiment (at Reactor) Proposed A-correlation experiment (pulsed source)

UCN Polarization via high B-field

Note: $\vec{\sigma}_n$ anti-parallel to $\vec{\mu}_n$

Experiment Design

Experiment Layout

Neutron Polarizing Magnets

Electron Detectors

UCNA experiment

Experiment commissioning underway Initial goal is 0.2% measurement of A-correlation (present measurement ~ 1%)

UCNA

Most Recent Collaborator

CKM Summary: New V_{us}

Neutron Electric Dipole Moment (EDM)

- Why Look for EDMs?
 - Existence of EDM implies violation of Time Reversal Invariance

Time Reversal Violation seen in K⁰-K⁰ system
 May also be seen in early Universe

 Matter-Antimatter asymmetry
 but the Standard Model effect is too small !

Quantum Picture – Discrete Symmetries

Charge Conjugation : Parity : Time Reversal :

$$\hat{\hat{C}} \bullet \psi_n \Rightarrow \psi_{\bar{n}}$$

$$\hat{\hat{P}} \bullet \psi(x, y, z) \Rightarrow \psi(-x, -y, -z)$$

$$\hat{\hat{\Gamma}} \bullet \psi(t) \Rightarrow \psi(-t)$$

Assume
$$\vec{\mu} = \mu \frac{\dot{J}}{J}$$
 and $\vec{d} = d \frac{\dot{J}}{J}$

Non-Relativistic Hamiltonian

$$H = \underbrace{\vec{\mu} \cdot \vec{B}}_{-} + \underbrace{\vec{d} \cdot \vec{E}}_{-}$$

C-even	C-even
P-even	P-odd
T-even	T-odd

Non-zero d violates T and CP

But some molecules have EDMs!

NH₃: $d = 0.3 \times 10^{-8} \text{ e-cm}$ H₂0: $d = 0.4 \times 10^{-8} \text{ e-cm}$ NaCI: $d = 1.8 \times 10^{-8} \text{ e-cm}$

Note: n-EDM < 3 x 10⁻²⁶ e-cm

NH₃ EDM is not T-odd or CP-odd

since
$$\vec{d} \neq d \frac{\vec{J}}{J}$$

If Neutron had degenerate state

it would not violate T or CP

CP Violation and the Matter/Antimatter Asymmetry in the Universe

- Sakharov Criteria
 - Baryon Number Violation
 - Departure from Thermal Equilibrium
 - CP & C violation

- Standard Model CP violation is insufficient
 - Must search for new sources of CP
 - B-factories, Neutrinos, EDMs

Electroweak Baryogenesis

Possible source of Matter-Antimatter Asymmetry

Status of Electroweak Baryogenesis

- Appeared to be "ruled out" several years ago
 - First order phase transition doesn't work for Standard Model with M_{Higgs} > 120 GeV
- Recent work has revived EW baryogenesis
 - Minimal Supersymmetric Standard Model (MSSM) parameters ineffective (ϕ_{CP} <<1)
 - First order phase transition still viable (with new gauge degrees of freedom)
 Lee, Cirigliano, and Ramsey-Musolf: arXiv:hep-ph/0412354
 - Resonance in MSSM during phase transition
 → Note: Leptogenesis is also possible

How to measure an EDM?

Recall magnetic moment in B field:

$$\hat{\mathbf{H}} = \vec{\mu} \cdot \vec{\mathbf{B}}; \quad \vec{\mu} = 2 \left(\frac{\mu_{\mathrm{N}}}{\hbar} \right) \vec{\mathbf{S}}$$

$$\vec{\tau} = \frac{d\vec{S}}{dt} = \vec{\mu} \times \vec{B} \implies 2\left(\frac{\mu_{N}}{\hbar}\right) |\vec{S}| |\vec{B}|; \text{ if } \vec{S} \perp \vec{B}$$

Classical Picture:

- If the spin is not aligned with B there will be a precession due to the torque
- Precession frequency $\,\omega$ given by

$$\omega = \frac{d\varphi}{dt} = \frac{1}{S} \frac{dS}{dt}$$
$$d\vec{S} = \frac{2\mu_{N}B}{\hbar} \Rightarrow \frac{2d_{N}E}{\hbar} \text{ for } \vec{d}_{N} \text{ in } \vec{E}$$

Simplified Measurement of EDM

E-field

- 1. Inject polarized particle
- 2. Rotate spin by $\pi/2$
- 3. Flip E-field direction
- 4. Measure frequency shift

Must know B very well

What systems work well?

- Charged particle is difficult
 - Electric field accelerates
 - May work for storage ring
- Neutral particle is easier
 - Atoms (for electron EDM)
 - Also can work for quark EDM
 - Free Neutrons (for quark EDM)

Atomic EDMs

- Schiff Theorem
 - Neutral atomic system of point particles in Electric field readjusts itself to give zero E field at all charges

But ...

- Magnetic effects and finite size of nucleus can break the symmetry (relativistic effects can also enhance)
 - Enhancement for d_e in paramagnetic atoms (magnetic effect with mixing of opposite parity atomic states)

Thus $d_{TI} \sim -585 d_e \& |d_e| < 1.6 \times 10^{-27} e$ -cm

 Suppression for hadronic EDMs in Diamagnetic atoms (eg. Hg) – but Schiff Moment survives (due to finite size of nucleus and nuclear force)

Naively expect
$$d_A \sim \left(\frac{R_{Nucleus}}{r_{Atom}}\right)^2 d_{n,p} \sim \left(\frac{A^{1/3}R_0}{a/Z}\right)^2 d_{n,p} \sim 10^{-4} d_{n,p}$$

for ¹⁹⁹Hg

Experimental EDMs

- Present best limits come from atomic systems and the free neutron
 - Paramagnetic atoms (e.g. $^{\rm 205}{\rm TI}$) are primarily sensitive to $\rm d_e$
 - Diamagnetic atoms (e.g. ^{199}Hg) and the free neutron are primarily sensitive to $\theta_{\text{QCD}}, d_{\text{q}}, \widetilde{d}_{\text{q}}$
- Future best limits may come from
 - Molecules (PbO, YbF)
 - Liquids (¹²⁹Xe)
 - Solid State systems (Gadolinium-Gallium-Garnet=GGG)
 - Storage Rings (Muons, Deuteron)
 - Radioactive Atoms (225Ra, 223Rn)
 - New Technology for Free Neutrons (PSI, ILL, SNS)

e⁻ EDM from ²⁰⁵TI

FIG. 1. Schematic diagram of the experiment; not to scale.

¹⁹⁹Hg EDM

¹⁹⁹Hg EDM Experimental Setup

ILL-Grenoble neutron EDM Experiment Harris et al. Phys. Rev. Lett. 82, 904 (1999)

Trapped Ultra-Cold Neutrons (UCN) with $N_{UCN} = 0.5$ UCN/cc

|E| = 5 - 10 kV/cm

100 sec storage time

n-EDM vs Time (Moore's Law)

