QCD Phenomenology **in current research in the field. Lecture courses will cover the major** *and* **Step 1: Complete the Online Application Form by April 1,2006.** *Nucleon Structure* \boldsymbol{v} $\boldsymbol{$ **Scholarship:** If you wish to request a full or partial scholarship in order to attend NNPSS, please make the request as part of your application, ϵ **Step 2: Your application will be reviewed and you will be notified of**

Stan Brodsky, SLAC

Lecture IV

National Nuclear Physics Summer School

QCD Phenomenology

Hadron Dynamics at the Amplitude Level

- DIS studies have primarily focussed on probability distributions: integrated and unintegrated.
- Test QCD at the amplitude level: Phases, multi-parton correlations, spin, angular momentum, exclusive amplitudes
- Impact of ISI and FSI: Single Spin Asymmetries, Diffractive Deep Inelastic Scattering, Shadowing, Antishadowing
- Wavefunctions on the light front: fundamental QCD dynamics of hadrons, nuclei
- Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

QCD Phenomenology

Stan Brodsky, SLAC NNPSS

Light-Front Wavefunctions *P* α β β

 $\mathbf{P} \mathbf{P}^{\mathbf{u}}$ \longrightarrow $\mathbf{P} \mathbf{P}^{\mathbf{u}}$ \longrightarrow $\mathbf{P} \mathbf{P}^{\mathbf{u}}$ Invariant under boosts! Independent of P^{lu}

July 2006 $\frac{4}{3}$

NNPSS QCD Phenomenology Stan Brodsky, SLAC **i**
QCD Phenomenology 5tan Brodsky

'Tis a mistake / Time flies not It only hovers on the wing Once born the moment dies not 'tis an immmortal thing

QCD Phenomenology Stan Brodsky, SLAC

Light-Front Wavefunctions

Dirac's Front Form: Fixed $\tau = t + z/c$

$$
\psi(x, k_{\perp})
$$

Invariant under boosts. Independent of P^µ $x_i = \frac{k_i^{+}}{P^{+}}$
H_{LF} QCD $|\psi\rangle = M^2 |\psi\rangle$

Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

Mapping between LF(3+1) and AdS5

July 2006 *x*(*2006 ^M* [∝] [∂]²

NNPSS QCD Phenomenology Stan Brodsky, SLAC **QCD** Phenomenology

*^z*⁰ ⁼ ¹ hasky, ULIC Broc x^2 *sky*, *SLAC* \sim 1 σ 1 σ 1 σ *d*₂ $\frac{d^2y}{dx^2}$ (*C*) (G. de Teramond and sjb

M_{QCD} Λ $\overline{C}/\overline{CT}$ to \overline{C} $\frac{\partial}{\partial \theta}$ is the $\frac{\partial}{\partial \theta}$ *Map AdS/CFT to 3+1 LF Theory* M_{G12} A A C/TT A A B/T A C T A B A C C T A C T T A A A B C T A B C C T A C T T C T cording to the Breitenlohner-Freedman bound in the Breitenlohner-Freedman bound in the set of the Breitenlohner
Contract the set of the Breitenlohner-Freedman bound in the set of the Breitenlohner set of the Breitenlohner G. de 7

Man A d² / C **T** (*t* (*x* (*t* (*g*) = *d* (*d*) = *d*

tive radial equation: Effective radial equation:

$$
\left[-\frac{d^2}{d\zeta^2} + V(\zeta)\right]\phi(\zeta) = \mathcal{M}^2\phi(\zeta)
$$

$$
\zeta^2 = x(1-x)b_{\perp}^2.
$$

Effective conformal $V(\zeta) = -\frac{1-4L^2}{4\zeta^2}$. potential: representing the *x*-weighted transverse impact coordinate

vertical:

\n
$$
V(\zeta) = -\frac{1 - 4L^2}{4\zeta^2}.
$$

 P_n \mathcal{L} \overline{a} General solution:

$$
\widetilde{\psi}_{L,k}(x,\vec{b}_{\perp}) = B_{L,k}\sqrt{x(1-x)}
$$
\n
$$
J_L\left(\sqrt{x(1-x)}|\vec{b}_{\perp}|\beta_{L,k}\Lambda_{\text{QCD}}\right)\theta\left(\vec{b}_{\perp}^{\ 2}\leq\frac{\Lambda_{\text{QCD}}^{-2}}{x(1-x)}\right),
$$

July 2006 $\int u \, dy \, z \, du \, du$ W₂ *B*_D, *B*_D,

NNPSS QCD Phenomenology Stan Brodsky, SLAC (−1)*^L*π*J*1+*L*(β*L,k*)*J*¹−*^L*(β*L,k*)

AdS/CFT Predictions for Meson LFWF ⁰ $d₂$ AUS/CTI Premiunis por Mex on LFWF $\psi(x, b_\perp)$ *x ions for Meson LFW*

The WF are normalized to *M*ρ.

impact *Space* Barmonic Oscillator **12 Iruncated Space Parmonic Oscillator**
12 **NNPSS**
12 *QCD Phenomenology Stan Brodsky*,
12 *Stan Brodsky*, Thus α = *L* is integer thus a \mathcal{L} is integrated by \mathcal{L}

NNPSS QCD Phenomenology Stan Brodsky, SLAC

tan Brodsk
.

Deep Inelastic Lepton Proton Scattering \overline{a} De en Inchieu Continua Destres

 \int uly 2006 \qquad

NNPSS QCD Phenomenology Stan Brodsky, SLAC

Use Diffraction to Resolve Hadron Substructure

- Measure Light-Front Wavefunctions
- Test AdS/CFT predictions
- Novel Aspects of Hadron Wavefunctions: Intrinsic Charm, Hidden Color, Color Transparency/Opaqueness
- Diffractive Di-Jet Production
- Nuclear Shadowing and Antishadowing
- New Mechanism for Higgs Production

QCD Phenomenology

Stan Brodsky, SLAC NNPSS

Fluctuation of a Pion to a Compact Color Dipole State

Color-Transparent Fock State For High Transverse Momentum Di-Jets

Same Fock State Determines Weak Decay

Evaluation of QCD Matrix Elements: Example f_π

• Pion decay constant defined by the matrix element of EW current J_W^+ :

$$
\langle 0 | \overline{\psi}_u \gamma^+(1 - \gamma_5) \psi_d | \pi^- \rangle = i\sqrt{2} P^+ f_\pi,
$$

with

$$
|\pi^{-}\rangle = |d\overline{u}\rangle = \frac{1}{\sqrt{N_C}}\frac{1}{\sqrt{2}}\sum_{c=1}^{N_C} \left(b_c^{\dagger}{}_{d\downarrow}d_c^{\dagger}{}_{u\uparrow} - b_c^{\dagger}{}_{d\uparrow}d_c^{\dagger}{}_{u\downarrow}\right)|0\rangle.
$$

• Use light-cone expression:

$$
f_{\pi} = 2\sqrt{N_C} \int_0^1 dx \int \frac{d^2 \vec{k}_{\perp}}{16\pi^3} \psi_{\overline{q}q/\pi}(x, k_{\perp}).
$$

Lepage and Brodsky, Phys. Rev. D **22**, 2157 (1980)

• Find:

$$
f_{\pi} = \frac{\sqrt{3} \Lambda_{\text{QCD}}}{8J_1(\beta_{0,1})} = 83.4 \text{ Mev},
$$

for $\Lambda_{\rm QCD} = 0.2$ GeV.

Experiment: $f_{\pi} = 92.4$ Mev.

QCD Phenomenology Stan Brodsky, SLAC Caltech High Energy Seminar, Feb 6, 2006 Page 38

Predictions from AdS/CFT

July 2006 $NNPSS$!

QCD Phenomenology

16

The **x** distribution of diffractive dijets from the platinum target for 1.25 $\leq k_t \leq 1.5$ GeV/c (left) and for $1.5 \le k_t \le 2.5$ GeV/c (right). The solid line is a fit to a combination of the asymptotic and CZ distribution amplitudes. The dashed line shows the contribution from the asymptotic function and the dotted line that of the CZ function. $\frac{1}{2}$ dependence of the integration of the int

 $July 2006$ $I7$ $\int \frac{du}{y} \, z \, du \, dy \, z \, du$ transverse momentum *kt* : 1.25 GeV/*c* ≤ *kt* ≤ 1.5 GeV/*c* and 1.5 GeV/*c* ≤ *kt* ≤ 2.5 GeV/*c*.

NNPSS QCD Phenomenology Stan Brodsky, SLAC the platinum target were used, see Fig. 14. For these events, the value of *u* was computed from

the measured momenta of the momenta of the standard model of the standard Stan

Solving the LF Heisenberg Eqn.

- Discretized Light-Cone Quantization (DLCQ) Minkowski space ! Pauli, sjb
- Many I+I model field theories completely solved using DLCQ Hornbostel, Pauli, sjb; Klebanov
- UV Regularization: 3+ 1 Pauli Villars Hiller, McCartor, sjb
- Transverse Lattice Bardeen, Peterson, Rabinovici, Burkardt, Dalley
- Bethe-Salpeter/Dyson-Schwinger at fixed LF time
- Angular Structure of Solutions known Karmanov, Hwang, sjb
- Use AdS/CFT model solutions and AdS/LF **Equations as starting point!** Vary, de Teramond sjb

 μ luly 2006

NNPSS
 QCD Phenomenology Stan Brodsky, SLAC
 $\frac{18}{18}$

illustrated in Fig. 2 in terms of the block matrix \sim Heisenberg Equation Light-Front QCD

 $H_{LC}^{QCD}|\Psi_h\rangle = M_h^2|\Psi_h\rangle$ # !# matrix depends of $C\cap$ arranged the way one has arranged the Fourse Eq. (3.7). Note that most that m \mathbf{H}_{LC} if \mathbf{H}_{LC} if $\mathbf{W}_{h} = \mathcal{M}_{h}$ if \mathbf{W}_{h} interaction as \mathbf{H}_{LC}

, *k*

 $\overline{}$

Fig. 6. A few selected matrix elements of the QCD from Hamiltonian Hamiltonian Hamiltonian Hamiltonian Hamiltonian H Fig. 2. The Hamiltonian matrix for a SU(N)-meson. The matrix elements are represented by energy diagrams. Within Pauli, Pinsky, sjb

Stan Brodsky, SLAC

QCD Phenomenology

Structure function of boson constituent in 3+1 Yukawa theory

Three-particle Fock state truncation

Pauli-Villars Regularization

Hiller, McCartor, sjb

Stan Brodsky, SLAC NNPSS QCD Phenomenology

Use AdS/CFT basis (complete and orthonormal) to diagonalize LF QCD Hamiltonian

GPDs & Deeply Virtual Exclusive Processes

"handbag" mechanism

$$
H(x,\xi,t), E(x,\xi,t),\ldots
$$

$$
\xi = \frac{x_B}{2 - x_B}
$$

NNPSS QCD Phenomenology Stan Brodsky, SLAC

Time-like Deeply Virtual Compton Scattering Time-like Generalized Parton Distributions

 \mathcal{D} of timelike DVCS amplitude $T(\gamma^* \to H^+ H^- \gamma)$ *^k*² [∼] ⁰ *Interference of timelike DVCS amplitude ^T*(γ[∗] [→] *^H*+*H*−γ) *with timelike form factor produces charge asymmetry ^e*+*e*[−] [→] *^H*+*H*−^γ

$$
e^+e^-\to H^+H^-\gamma
$$

 J^{u} 2000 $_{23}$

NNPSS QCD Phenomenology Stan Brodsky, SLAC

al "seagull" interaction of two photons at same independent of photon virtuality at fixed pair mass *, f*0*,* η*,* σ*,* η*c,* η*^b* point produces isotropic real amplitude,

July 2006 $_{24}$ $\frac{1}{2}$ 0

NNPSS QCD Phenomenology Stan Brodsky, SLAC

^γ∗^γ [→] *^V* ⁰*^X*

Stan Brodsky, SLAC NNPSS QCD Phenomenology

Final State Interactions Produce T-Odd (Sivers Effect)

- Bjorken Scaling!
- Arises from Interference of Final-State Coulomb Phases in S and P waves
- Relate to the quark contribution to the target proton anomalous magnetic moment
- $\vec{S} \cdot \vec{p}_{jet} \times \vec{q}$ • Sum of Sivers Functions for all quarks and gluons vanishes. (Zero gravitoanomalous magnetic moment)

Hwang, Schmidt. sjb; Burkardt

QCD Phenomenology Stan Brodsky, SLAC

Key QCD Experiment at GSI Measure single-spin asymmetry *AN*

Measure single-spin asymmetry *AN* in Drell-Yan reactions Measure single-spin asymmetry *AN* in Drell-Yan reactions Lued Suigle-Spin d Symmetry *A*
And An A*n* from *Dreif-Yan re*

^S! *· ^q*! [×] *^p*! correlation *pp*[↑] [→] "+"−*^X ^S*! *· ^q*! [×] *^p*! correlation Measure single-spin asymmetry *AN* in and the state of the sta Leading-twist Bjorken-scaling *AN* from *S, P*-wave *n b*, *i* - wave
initial-state gluonic interactions i coding twist Riorkon scaling \land

*Q*² = *x*1*x*2*s pp*[↑] [→] "+"−*^X Correling* (*Di*) – α Predict: $A_N(DY) = -A_N(DIS)$

$$
Q^2 = x_1 x_2 s
$$

$$
Q^2 = 4 \text{ GeV}^2, s = 80 \text{ GeV}^2
$$

$$
x_1 x_2 = .05, x_F = x_1 - x_2
$$

NNPSS
1ly 2006

QCD Phenomenology *pp*[↑] [→] "+"−*^X*

28

C 5 GeV2 Stan Brodsky, SLAC

$$
\overline{p}p_{\uparrow}\rightarrow \ell^+\ell^- X
$$

 $\vec{S} \cdot \vec{q} \times \vec{p}$ correlation

Measure Time-like T-odd SSA

Test both Sivers and Collins Effect in Quark Fragmentation

production plane; use asymmetric B-factory $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ Measure spin projection of detected hadron normal to

July 2006 $_{29}$

NNPSS QCD Phenomenology Stan Brodsky, SLAC

S(*a*ll diousky, *SLAC* ∆++

- Quarks Reinteract in Final State
- Analogous to Coulomb phases, but not unitary
- Observable effects: DDIS, SSI, shadowing, antishadowing
- Structure functions cannot be computed from LFWFs computed in isolation
- Wilson line not 1 even in lcg

NPSS QCD Phenomenology Stan Brodsky, SLAC

f_{0} \mathbf{r} i S r k $\cdot \mathcal{Q}v$ tri *First Evidence for Quark Structure of Matter*

Deep Inelastic Electron-Proton Scattering $\frac{3}{3}$ rela

 $Jy 2006$ 31 $\overline{2}$ 1 July

NNPSS QCD Phenomenology Stan Brodsky, SLAC n
Reds

Production of new types of quarks from quantum fluctuations

Diffractive Deep Inelastic Scattering \overline{z} e' e

Proton Remains Intact in Final State

NNPSS QCD Phenomenology Stan Brodsky, SLAC

Remarkable observation at HERA

0.20 r 0.15 0.10 0.05 ++ 0.00 0.15 0.10 **+** 0.05 0.00 20 40 60 $x_{\text{ex}} < 0.0008$ ZEUS $0.0008 < x_{\text{DA}} < 0.003$ **t** , $\frac{1}{2}$ 40 60 80 1 O0 - 80 - 100
Q²_{da} [GeV²] M. Derrick et al. [ZEUS Collaboration], Phys. Lett. B 315, 481 (1993). arXiv:hep-ex/0210027 v1 9 Oct 2002 20 and $\frac{1}{20}$ are different parameters $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ [1]. Experimen- $\overline{05}$ $\begin{array}{c|c|c|c|c|c|c|c|c} \hline \multicolumn{2}{c|}{\quad} & \multicolumn{2}{c}{\quad} & \multicolumn{2}{c}{\quad$ either tagging the colour of the colour o
The colour of the colour o $t = \frac{1}{\sqrt{2\pi}}$ $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ \overrightarrow{AB} in \overrightarrow{AB} 4-momentum squared transferred at the proton $\frac{36}{5}$ measurements presented here typical values of xIP $\frac{1}{2}$ $\frac{1}{2}$ defined via the control of the control of

 10% to 15% of DIS events are diffractive !

M. Derrick et al. [ZEUS Collaboration], Phys. Lett. B 315, 481 (1993).

July 2006 34 IUVPSO \mathcal{L} diffractive Distribution in Fig. 1. The diffractive Distribution in Fig. 1. The distribution in Fig. 1. The distribution is shown in Fig. 1. The distribution in Fig. 1. The distribution is shown in Fig. 1. The di

NNPSS

1V 2006 between the central hadronic system and the

 $\frac{1}{2}$

DDIS

- In a large fraction (\sim 10–15%) of DIS events, the proton escapes intact, keeping a large fraction of its initial momentum
- This leaves a large rapidity gap between the proton and the produced particles
- The *t*-channel exchange must be *color singlet* \rightarrow a pomeron??

Diffractive Deep Inelastic Lepton-Proton **Scattering**

NNPSS QCD Phenomenology Stan Brodsky, SLAC

Final State Interaction Produces Diffractive DIS

Low-Nussinov model of Pomeron

QCD Phenomenology Stan Brodsky, SLAC

Integration over on-shell domain produces phase i

Need Imaginary Phase to Generate Pomeron

Need Imaginary Phase to Generate T-Odd Single-Spin Asymmetry

Physics of FSI not in Wavefunction of Target

Final State Interactions in QCD

Feynman Gauge Light-Cone Gauge

Result is Gauge Independent

Need Final State Interactions !

Hoyer, Marchal. Peigne, Sannino, sjb

Enberg, Hoyer, Ingelman, sjb

QCD Mechanism for Rapidity Gaps

 $July 2006$ 40

Consequences for DDIS

- Underlying hard scattering sub-process is the same in diffractive and non-diffractive events
- Same Q^2 dependence of diffractive and inclusive PDFs (remember: hard radiation not resolved)
- and same energy (W or x_B) dependence
- $\Rightarrow \frac{\sigma_{\text{diff}}}{\sigma}$ independent of x_B and Q^2 (as in data) σ_{tot}
Also describes: vector meson leptoproduction BGMFS
- \bullet Note:
	- In pomeron models the ratio depends on $x_R^{1-\alpha}$ which is ruled out
	- In a two-gluon model with two hard gluons, the diffractive cross section depends on $[f_{q/p}(x_B,Q^2)]^2$

- Rescattering gluons have small momenta
	- \Rightarrow β dependence of diffractive PDFs arises from underlying (nonperturbative) $g \rightarrow q\bar{q}$ and $g \rightarrow gg$

Effective $\mathbb P$ distribution and quark structure function:

$$
f_{I\!\!P/p}(x_{I\!\!P}) \propto g(x_{I\!\!P}, Q_0^2)
$$

$$
f_{q/I\!\!P}(\beta, Q_0^2) \propto \beta^2 + (1 - \beta)^2
$$

• Diffractive amplitudes from rescattering are dominantly $imaginary - as expected for diffraction$ (Ingelman-Schlein *model has real amplitudes)*

> S. J. Brodsky, P. Hoyer, N. Marchal, S. Peigne and F. Sannino, Phys. Rev. D 65, 114025 (2002) [arXiv:hep-ph/0104291]. S. J. Brodsky, R. Enberg, P. Hoyer and G. Ingelman, arXiv:hep-ph/0409119.

ZEUS data on cross section ratios

July 2006 $\frac{43}{10}$

Enberg, Hoyer, Ingelman, sjb

The Pomeron formalism

 F_2^D is fitted to HERA data \longrightarrow good description

Lines given by fit with NLO QCD evolution

July 2006

Stan Brodsky, SLAC NNPSS QCD Phenomenology

Lab Frame Picture

Sum Eikonal Interactions Similar to Color Dipole Model

- Quarks Reinteract in Final State
- Analogous to Coulomb phases, but not unitary
- Observable effects: DDIS, SSI, shadowing, antishadowing
- Structure functions cannot be computed from LFWFs computed in isolation
- Wilson line not 1 even in lcg

Stan Brodsky, SLAC NNPSS QCD Phenomenology

$$
Q^4 \frac{d\sigma}{dQ^2 dx_B} = \frac{\alpha_{\rm em}}{16\pi^2} \frac{1 - y}{y^2} \frac{1}{2M\nu} \int \frac{dp_2^-}{p_2^-} d^2 \vec{r}_T d^2 \vec{R}_T \, |\tilde{M}|^2
$$

where

ł

$$
|\tilde{M}(p_2^-, \vec{r}_T, \vec{R}_T)| = \left| \frac{\sin \left[g^2 W(\vec{r}_T, \vec{R}_T)/2\right]}{g^2 W(\vec{r}_T, \vec{R}_T)/2} \tilde{A}(p_2^-, \vec{r}_T, \vec{R}_T) \right|
$$

is the resummed result. The Born amplitude is

$$
\tilde{A}(p_2^-, \vec{r}_T, \vec{R}_T) = 2eg^2MQp_2^- V(m_{||}r_T)W(\vec{r}_T, \vec{R}_T)
$$

where $m_{\parallel}^2 = p_2^- M x_B + m^2$ and $V(m r_T) \equiv$ $\int d^2 \vec{p}_T$ $(2\pi)^2$ $e^{i \vec{r}_T \cdot \vec{p}_T}$ $\frac{e^{i\vec{r}_{T}\cdot\vec{p}_{T}}}{p_{T}^{2}+m^{2}}=\frac{1}{2\pi}% \sum_{r=0}^{\infty}\frac{e^{-i\vec{r}_{T}\cdot\vec{p}_{T}}}{p_{T}^{2}+m^{2}}=\frac{1}{2\pi}\sum_{r=0}^{\infty}\frac{e^{-i\vec{r}_{T}\cdot\vec{p}_{T}}}{p_{T}^{2}+m^{2}}$ $K_0(m r_T)$. *FSI not Unitary Phase!*

The rescattering effect of the dipole of the $q\bar{q}$ is controlled by

$$
W(\vec{r}_T, \vec{R}_T) \equiv \int \frac{d^2 \vec{k}_T}{(2\pi)^2} \frac{1 - e^{i\vec{r}_T \cdot \vec{k}_T}}{k_T^2} e^{i\vec{R}_T \cdot \vec{k}_T} = \frac{1}{2\pi} \log \left(\frac{|\vec{R}_T + \vec{r}_T|}{R_T} \right).
$$

Precursor of Nuclear Shadowing BHMPS

Deep Inelastic Lepton Proton Scattering De en Inchieu Continua Destres

Photon Diffractive Structure Function

deep inelastic scattering Diffractive deep inelastic scattering \overline{c} on a photon target

Related to anomalous magnitude of nology
∗ ^ρ⁰ [→] ^π+π[−]

The Odderon

Merino, Rathsman, sjb

- Three-Gluon Exchange, C= -, J=1, Nearly Real Phase *BFKL*
- Interference of 2-gluon and 3-gluon exchange leads to matter/ antimatter asymmetries
- Asymmetry in jet asymmetry in $\,\,\gamma p\rightarrow c c \, p\,\,\,\,\,\,\,$ e-p collider test
- Analogous to lepton energy and angle asymmetry ^γ*^Z* [→] *^e*⁺*e*−*^Z*
- Pion Asymmetry in $γp → π⁺π⁻p$

Odderon: Another source of antishadowing

Pomeron

Pumplin, sjb Gribov

Nuclear Shadowing in QCD

Shadowing depends on understanding diffraction in DIS

Nuclear Shadowing not included in nuclear LFWF !

Dynamical effect due to virtual photon interacting in nucleus

The one-step and two-step processes in DIS on a nucleus.

Coherence at small Bjorken x_B : $1/Mx_B = 2\nu/Q^2 \geq L_A$.

If the scattering on nucleon N_1 is via pomeron exchange, the one-step and two-step amplitudes are opposite in phase, thus diminishing the \overline{q} flux reaching N_2 .

 \rightarrow Shadowing of the DIS nuclear structure functions.

HERA DDIS produces observed nuclear shadowing

July 2006 53

Shadowing depends on understanding diffraction in DIS

Integration over on-shell domain produces phase i

Need Imaginary Phase to Generate Pomeron

Need Imaginary Phase to Generate T-Odd Single-Spin Asymmetry

Physics of FSI not in Wavefunction of Target

July 2006 54

Stan Brodsky, SLAC NNPSS QCD Phenomenology

The one-step and two-step processes in DIS on a nucleus.

If the scattering on nucleon N_1 is via $C = -$ Reggeon or Odderon exchange, the one-step and two-step amplitudes are constructive in phase, enhancing the \bar{q} flux reaching N_2

 \rightarrow Antishadowing of the DIS nuclear structure functions

Phase of two-step amplitude relative to one step:

$$
\frac{1}{\sqrt{2}}(1-i) \times i = \frac{1}{\sqrt{2}}(i+1)
$$

Constructive Interference

Depends on quark flavor!

Thus antishadowing is not universal

Different for couplings of γ^*,Z^0,W^\pm

Shadowing and Antishadowing in Lepton-Nucleus Scattering

• Shadowing: Destructive Interference of Two-Step and One-Step Processes *Pomeron Exchange*

• Antishadowing: Constructive Interference of Two-Step and One-Step Processes! *Reggeon and Odderon Exchange*

• Antishadowing is Not Universal! Electromagnetic and weak currents: different nuclear effects ! Potentially significant for NuTeV Anomaly*}*

Origin of Nuclear Shadowing
and Regge Behavior of Deep
Inelastic Structure Functions

in light-cone gauge

Antiquark Interacts with Target Nucleus at Effective Energy $\hat{s} \propto 1/x_{Bj}$ $\sigma_{\bar{q}N} \sim \hat{s}^{\alpha_R - 1} \to F_{2N}(x_{bj}) \sim x^{1-\alpha_R}$ at small x_{bj} γ^* , W^{\pm}, Z Shadowing of antiquark-nucleus cross section $\sigma_{\bar{q}A} \sim A^{\alpha}$ produces same A dependence of nuclear structure function 8711A30

July 2006 58

QCD Phenomenology
58

QCD Phenomenology
60 "Nuclear Antishadowing in Neutrino Deep Inelastic Scattering," Phys. Rev. D 70, 116003 (2004) [arXiv:hep-ph/0409279].

. The

Shadowing and Antishadowing of DIS Structure Functions

S. J. Brodsky, I. Schmidt and J. J. Yang, "Nuclear Antishadowing in Neutrino Deep Inelastic Scattering," Phys. Rev. D 70, 116003 (2004) [arXiv:hep-ph/0409279].

Nuclear Effect not Universal !

QCD Phenomenology
62 62

 $\frac{100000 \text{ F} \cdot 2}{2}$ (solid curves) and $\frac{13}{4}$ (dashed cur Ratios $F_2^A/F_2^{N^0}$ (solid curves) and $F_3^A/F_3^{N^0}$ (dashed curves) current exchange interactions, at α = 1 G = 1 G

 $\text{July } 2006$ array $\text{gray } 63$ \mathcal{S}_s in According-nucleus Distribution-nucleus Distribution-nucleus \mathcal{S}_s and \mathcal{S}_s and \mathcal{S}_s $\text{Jury } 2000$ 63

QCD Phenomenology

nenomenology

Stan Brodsky, SLAC

63

64

Coherence of multiscattering nuclear processes

Shadowing

Different antishadowing for

Neutral currents Charged currents Electromagnetic currents Antishadowing

Estimate 20% effect on extraction of $\sin^2\theta_W$ for NuTeV

Need new experimental studies of antishadowing in

- *•* Parity-violating DIS
- *•* Spin Dependent DIS
- *•* Charged and Neutral Current DIS

QCD Phenomenology
65

Nuclear Shadowing and Anti-Shadowing in QCD Nuclear Shadowing and Antishadowing in QCD

- *•* Relation to Diffractive DIS and Final-State Interactions
- *•* Novel Color Effects
- *•* Non-Universality of Antishadowing
- *•* Implications for NuTeV

I. Schmidt, J. J. Yang, and SJB "Nuclear Antishadowing in Neutrino Deep Inelastic Scattering," Phys. Rev. D 70, 116003 (2004) [arXiv:hep-ph/0409279].

Jian-Jun Yang Ivan Schmidt

H. J. Lu and SJB "Shadowing And Antishadowing Of Nuclear Structure Functions," Phys. Rev. Lett. 64, 1342 (1990).

Hung Jung Lu

Stan Brodsky, SLAC VALUE of the Stan Brodsky, SLAC VALUE 2006

Hard Diffraction from Rescattering

Unification:

- Diffractive Deep Inelastic Scattering (DDIS)
- Nuclear Shadowing & Antishadowing
- Single Spin Asymmetries (Sivers Effect)
- Diffractive Di-jets, Tri-jets
- Fundamental Features of Gauge Theory, Color

Novel Diffractive Phenomena and New Insights Into QCD from AdS/CFT

- Ashery Diffractive Di-Jet Production:
- First measurement of hadron wavefunction
- Verification of QCD Color Transparency
- Related phenomena: Diffractive deep inelastic scattering and vector meson electroproduction
- Nuclear shadowing and antishadowing
- New "Exclusive Diffractive Mechanism" for high xF Higgs Production

68

 $|p,S_z\rangle = \sum$ $n=3$ $\Psi_n(x_i,\vec{k}_{\perp i},\lambda_i)|n;\vec{k}$ $k_{\perp_i},\lambda_i>$

sum over states with n=3, 4, ...constituents

The Light Front Fock State Wavefunctions

$$
\Psi_n(x_i,\vec{k}_{\perp i},\lambda_i)
$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ} .

The light-cone momentum fraction

$$
x_i = \frac{k_i^+}{p^+} = \frac{k_i^0 + k_i^z}{P^0 + P^z}
$$

are boost invariant.

$$
\sum_{i}^{n} k_{i}^{+} = P^{+}, \ \sum_{i}^{n} x_{i} = 1, \ \sum_{i}^{n} \vec{k}_{i}^{\perp} = \vec{0}^{\perp}.
$$

Intrinsic glue, sea quarks, charm, bottom

Fixed LF time

July 2006

NNPSS QCD Phenomenology Stan Brodsky, SLAC

69

Hadrons Fluctuate in Particle Number

• Proton Fock States
|uud >,|uudg >,|uuds \bar{s} >,|uudc \bar{c} >,|uudb \bar{b} > \cdots

- $s(x) \neq \overline{s}(x)$ • Strange and Anti-Strange Quarks not Symmetric
- "Intrinsic Charm": High momentum heavy quarks
- "Hidden Color": Deuteron not always $p + n$
- $|uud>,|uuds>,|uuds\bar{s}\rangle,|uudc\bar{c}\rangle,|uudb\bar{b}\rangle\cdots$

 Strange and Anti-Strange Quarks not Syr

 "Intrinsic Charm": High momentum heav

 "Hidden Color": Deuteron not always p

 Orbital Angular Momentum Fluctuations

Anomal • Orbital Angular Momentum Fluctuations -Anomalous Magnetic Moment

|*uudcc*¯ *>* Fluctuation in Proton QCD: Probability $\frac{\sim \Lambda_G^2}{M^2}$ *QCD* M_Q^2 $|e^+e^- \ell^+ \ell^-$ > Fluctuation in Positronic QED: Probability [∼](*me*α)⁴ M_ℓ^4

OPE derivation - M.Polyakov et al.

cc¯ in Color Octet

Distribution peaks at equal rapidity (velocity) Therefore heavy particles carry the largest momentum fractions

High x charm!

 $|p,S_z\rangle = \sum$ $n=3$ $\Psi_n(x_i,\vec{k}_{\perp i},\lambda_i)|n;\vec{k}$ $k_{\perp_i},\lambda_i>$

sum over states with n=3, 4, ...constituents

The Light Front Fock State Wavefunctions

$$
\Psi_n(x_i,\vec{k}_{\perp i},\lambda_i)
$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ} .

The light-cone momentum fraction

$$
x_i = \frac{k_i^+}{p^+} = \frac{k_i^0 + k_i^z}{P^0 + P^z}
$$

are boost invariant.

$$
\sum_{i}^{n} k_{i}^{+} = P^{+}, \ \sum_{i}^{n} x_{i} = 1, \ \sum_{i}^{n} \vec{k}_{i}^{\perp} = \vec{0}^{\perp}.
$$

Intrinsic glue, sea quarks, charm, bottom

Fixed LF time

July 2006

July 2006 $\frac{73}{2}$

Measure c(x) in Deep Inelastic Lepton-Proton Scattering

 $\boldsymbol{\mathsf{x}}$

DGLAP / Photon-Gluon Fusion Factor of 30 too small

July 200 6

Stan Brodsky, SLAC NNPSS QCD Phenomenology

C

V. D. Barger, F. Halzen and W. Y. Keung, "The Central And Diffractive Components Of Charm Production,"

Phys. Rev. D 25, 112 (1982).

NNPSS
 QCD Phenomenology Stan Brodsky, SLAC
 $\frac{78}{2006}$

- EMC data: $c(x, Q^2) > 30 \times DGLAP$ $Q^2 = 75 \text{ GeV}^2$, $x = 0.42$
- High x_F $pp \rightarrow J/\psi X$
- High x_F $pp \rightarrow J/\psi J/\psi X$
- High x_F $pp \rightarrow \Lambda_c X$
- High x_F $pp \rightarrow \Lambda_b X$
- High x_F $pp \rightarrow \Xi(ccd)X$ (SELEX)

Diffractive Dissociation of Intrinsic Charm

Coalescence of Comoving Charm and Valence Quarks Produce *J/*ψ, Λ*^c* and other Charm Hadrons at High *xF*

Shadowing of $pA \rightarrow J/\Psi X$

*J/*Ψ Production on Front Surface No Absorption of Propagating *J/*Ψ $\sigma(p + A \rightarrow J/\Psi + X) \propto A^{2/3}$

Elastic scattering of IC Fock state: $\left| \left[\frac{uud}{8c}[\bar{c}\bar{c}]_{8c} > +N_1 \rightarrow \left| \left[\frac{uud}{8c}[\bar{c}\bar{c}]_{8c} > +N_1 \right] \right| \right.$ followed by: $\left| \left[\frac{uud}{8c} \right] \left[c\bar{c} \right] \right|_{8c} > +N_2 \rightarrow J/\Psi + X$ Depleted flux on downstream nucleons Color-Opaque Color-Octet Intrinsic Charm!

July 200 6

Nuclear effects in Quarkonium production

 $p + A$ at $s^{1/2} = 38.8$ GeV

E772 data $\sigma(p+A) = A^{\alpha} \sigma(p+N)$

Strong x_F - dependence

Nuclear effects scale with x_F , not x_{2} μ M.Leitch

NNPSS
aly 2006 CCD Phenomenology Stan Brodsky, SLAC July 2006

Nuclear Dependence of Quarkonium Production

NA3 data for $\frac{d\sigma}{dx_F}(p(\pi)A \to J/\psi X)$: hard A^1 and "diffractive" $A^{2/3}$ components

Diffractive contribution extends to large *x^F*

 $A^{\alpha(x_F)}$ not $A^{\alpha(x_2)}$: PQCD Factorization Violated!

Hard Component $\frac{d\sigma}{dx_F}(p(\pi)A \to J/\psi X)$ The fit: *gg* fusion (dashed) $q\bar{q}$ fusion (dashed-dot)

total (solid)

A1 Component

QCD Phenomenology
86 Stan Brodsky, SLAC

EXPERIMENTAL J/ ψ HADRONIC PRODUCTION FROM 150 TO 280 GeV/c

NA3 COLLABORATION

CERN-EP/83-86 June 29th, 1983

• IC Explains Anomalous $\alpha(x_F)$ not $\alpha(x_2)$ dependence of $pA \to J/\psi X$ (Mueller, Gunion, Tang, SJB)

• Color Octet IC Explains *^A*2*/*³ behavior at high x_F (NA3, Fermilab) (Kopeliovitch, Schmidt, Soffer, SJB)

Color Opaqueness

- IC Explains $J/\psi \rightarrow \rho \pi$ puzzle (Karliner, SJB)
- *•* IC leads to new effects in *B* decay (Gardner, SJB)

\blacksquare intrinsic Communitation in the community in t **Double Charmonium Production**

$$
\pi A \to J/\psi J/\psi X
$$

intrinsic charm contribution to double quarkonium hadroproduction \star all of the double *J/I,~* events arise from these configu-Intrinsic charm contribution to double quarkonium

R. Vogt^a, S.J. Brodsky b

It is clearly important for the double *J/+* measure-The probability distribution for a general *n*-particle intrinsic $c\bar{c}$ Fock state as a function of x and k_T \blacksquare s^{\prime} written as α $\sum_{i=1}^n$ parameter of 2008 pairs measured in v- nucleus $\frac{1}{2}$ $\mathcal{L}_{\mathcal{L}}$ = pairs are created by the materialization of Fock states in the projection of $\mathcal{L}_{\mathcal{L}}$

$$
\frac{dP_{ic}}{\prod_{i=1}^{n} dx_{i}d^{2}k_{T,i}} \quad \text{or} \quad \frac{dP_{ic}}{\prod_{i=1}^{n} dx_{i}d^{2}k_{T,i}} \quad = N_{n}\alpha_{s}^{4}(M_{c\overline{c}}) \frac{\delta(\sum_{i=1}^{n} k_{T,i})\delta(1-\sum_{i=1}^{n} x_{i})}{(m_{h}^{2}-\sum_{i=1}^{n} (m_{T,i}^{2}/x_{i}))^{2}},
$$

NNPSS QCD Phenomenology Stan Brodsky, SLAC iology Stan Brodsky, SLAC the laboratory [3-61.

Fig. 3. The $\psi\psi$ pair distributions are shown in (a) and (c) for the pion and proton projectiles. Similarly, the distributions of J/ψ 's from the pairs are shown in (b) and (d). Our calculations are compared with the π ⁻N data at 150 and 280 GeV/c [1]. The x_{disk} distributions are normalized to the number of pairs from both pion beams (a) and the number of pairs from the 400 GeV proton measurement (c). The number of single J/ψ 's is twice the number of pairs.

$N_A \sim N_{\text{data}}$ NA3 Data

July 2006 89 NNPSS

 $\frac{1}{2}$ wavefunction is assumed to be relatively slowly vary-slowly vary-slowly vary-slowly vary-slowly vary-slowly vary-

 \mathbf{E}

Double Intrinsic Charm

Production of a Double-Charm Baryon

Intrinsic Charm Mechanism for Exclusive Diffraction Production

 $p p \rightarrow J/\psi p p$

$$
x_{J/\psi}=x_c+x_{\bar{c}}
$$

Exclusive Diffractive High-X_F Higgs Production

Kopeliovitch, Schmidt, Soffer, sjb

Intrinsic $c\bar{c}$ pair formed in color octet 8_C in proton wavefunction Collision produces color-singlet *J/*ψ through color exchange RHIC Experiment Large Color Dipole

Intrinsic Charm Mechanism for Exclusive Diffraction Production

Kopeliovitch, Schmidt, Soffer, sjb

Anomalous QCD Effects

- Hidden Color of Nuclear Wavefunction
- Odderon Trajectory: Charm jet asymmetry
- Anomalous Regge Behavior: J=0 Fixed Pole
- Proton-Proton Scattering: Color Transparency Breakdown and A_{NN}
- Non-Universality of Antishadowing
- Intrinsic Heavy Quarks at large x
- Anomalous scaling of single-particle inclusive at high p_T

QCD Phenomenology

Stan Brodsky, SLAC NNPSS

Conformal symmetry: Template for QCD

- Initial approximation to PQCD; then correct for non-zero beta function and quark masses
- Commensurate scale relations: relate observables at corresponding scales: Generalized Crewther Relation
- Arguments for Infrared fixed-point for $\alpha_{\rm s}$

Alhofer, et al.

- Effective Charges: analytic at quark mass thresholds, finite at small momenta
- Eigensolutions of Evolution Equation of distribution amplitudes

QCD Phenomenology

Stan Brodsky, SLAC NNPSS

The Renormalization Scale Problem

$$
\rho = C_0 \alpha_s(Q) \left[1 + C_1(Q) \frac{\alpha_s(Q)}{\pi} + C_2(Q) \frac{\alpha_s^2(Q)}{\pi^2} + \cdots \right].
$$

How does one set renormalization scale Q?

Scale of $\alpha_{QED}(\mu^2)$ unique! [1 + ^α*R*(*s*∗)

The QED Effective Charge

- Complex
- Analytic through mass thresholds
- **•** Distinguishes between timelike and spacelike momenta
■ **1.** $\frac{1}{2}$ are not as a *s* $\frac{1}{2}$.

 $\mathcal{L} = \mathcal{L} \times \mathcal{L}$ [√]*s*[∗] % ⁰*.*52*^Q Analyticity essential !*

 $\text{July } 2006$ 96

Electron-Electron Scattering in QED

$$
\mathcal{M}_{ee\to ee}(++,++)=\frac{8\pi s}{t} \alpha(t)+\frac{8\pi s}{u} \alpha(u)
$$

- No renormalization scale ambiguity!
- Two separate physical scales.
- Gauge Invariant. Dressed photon propagator
- Sums all vacuum polarization, non-zero beta terms into running coupling.
- If one chooses a different scale, one must sum an infinite number of graphs -- but then recover same result!
- Number of active leptons correctly set
- Analytic: reproduces correct behavior at lepton mass thresholds

97

Stan Brodsky, SLAC NNPSS $-$ SUAC section in both $\sum_{i=1}^n$

The Renormalization Scale Problem M. Binger, sjb

- No renormalization scale ambiguity in QED
- Gell Mann-Low-Dyson QED Coupling defined from physical observable;
- Sums all Vacuum Polarization Contributions
- Renormalization Scale in QED scheme: Identical to Photon Virtuality
- Analytic: Reproduces lepton-pair thresholds
- Examples: muonic atoms, g-2, Lamb Shift
- Time-like and Space-like QED Coupling related by analyticity
- Uses Dressed Skeleton Expansion

QCD Phenomenology

Stan Brodsky, SLAC NNPSS

Lessons from QED : Summary

- Effective couplings are complex analytic functions with the correct threshold structure expected from unitarity
- Multiple "renormalization" scales appear
- The scales are unambiguous since they are physical kinematic invariants
- Optimal improvement of perturbation theory

Features of BLM Scale Setting

 On The Elimination Of Scale Ambiguities In Perturbative Quantum Chromodynamics.

Lepage, Mackenzie, sjb **Phys.Rev.D28:228,1983**

- All terms associated with nonzero beta function summed into running coupling
- Resulting series identical to conformal series
- Renormalon n! growth of PQCD coefficients from beta function eliminated!
- In general, BLM scale depends on all invariants

QCD Phenomenology

Stan Brodsky, SLAC NNPSS

BLM Scale Setting

$$
\rho = C_0 \alpha_{\overline{\text{MS}}} (Q) \left[1 + \frac{\alpha_{\overline{\text{MS}}} (Q)}{\pi} (-\frac{3}{2} \beta_0 A_{\text{VP}} + \frac{33}{2} A_{\text{VP}} + B) + \cdots \right]
$$
\n
$$
+ \cdots \left\{ \begin{array}{c} U \text{se } \mu \text{d} \\ \text{Me } \mu \text{d} \end{array} \right.
$$

Use nf dependence at NLO to identify AVP

by

$$
\rho = C_0 \alpha_{\overline{\mathrm{MS}}} (Q^*) \left[1 + \frac{\alpha_{\overline{\mathrm{MS}}} (Q^*)}{\pi} C_1^* + \cdots \right],
$$

where

Conformal Coefficient

 $Q^* = Q \exp(3A_{VP})$, $C_1^* = \frac{33}{2} A_{\rm VP} + B$.

The term $33A_{VP}/2$ in C_1^* serves to remove that part of the constant B which renormalizes the leading-order coupling. The ratio of these gluonic corrections to the light-quark corrections is fixed by $\beta_0 = 11 - \frac{2}{3} n_f$.

Use skeleton expansion: Gardi, Rathsman, sjb

July 2006 $_{\text{IOI}}$

$$
R_{e^+e^-}(Q^2) \equiv 3 \sum_{\text{flavors}} e_q^2 \left[1 + \frac{\alpha_R(Q)}{\pi} \right].
$$

\n
$$
R_{e^+e^-}(Q^2) = 3 \sum_{q} e_q^2 \left[1 + \frac{\alpha_{\overline{MS}}(Q)}{\pi} + \frac{\alpha_{\overline{MS}}^2}{\pi^2} (1.98 - 0.115n_f) + \cdots \right]
$$

\n
$$
\rightarrow 3 \sum_{q} e_q^2 \left[1 + \frac{\alpha_{\overline{MS}}(Q^*)}{\pi} + \frac{\alpha_{\overline{MS}}^2(Q^*)}{\pi^2} 0.08 + \cdots \right],
$$

\n
$$
\frac{Q^* = 0.710Q}{\pi^2} \text{ Notice that } \alpha_R(Q)
$$

\ndiffers from $\alpha_{\overline{MS}}(Q^*)$ by only 0.08 $\alpha_{\overline{MS}}/\pi$, so that
\n $\alpha_R(Q)$ and $\alpha_{\overline{MS}}(0.71Q)$ are effectively interchangeable (for
\nany value of n_f).

July 2006 QCD Phen
102

Deep-inelastic scattering. The moments of the nonsinglet structure function $F_2(x,Q^2)$ obey the evolution equation

$$
Q^{2} \frac{d}{dQ^{2}} \ln M_{n}(Q^{2})
$$

= $-\frac{\gamma_{n}^{(0)}}{8\pi} \alpha_{\overline{\text{MS}}}(Q) \left[1 + \frac{\alpha_{\overline{\text{MS}}}}{4\pi} \frac{2\beta_{0}\beta_{n} + \gamma_{n}^{(1)}}{\gamma_{n}^{(0)}} + \cdots \right]$
 $\rightarrow -\frac{\gamma_{n}^{(0)}}{8\pi} \alpha_{\overline{\text{MS}}}(Q_{n}^{*}) \left[1 - \frac{\alpha_{\overline{\text{MS}}}(Q_{n}^{*})}{\pi} C_{n} + \cdots \right],$

where, for example,

$$
Q_2^* = 0.48Q
$$
, $C_2 = 0.27$,
 $Q_{10}^* = 0.21Q$, $C_{10} = 1.1$.

For *n* very large, the effective scale here becomes $Q_n^* \sim Q/\sqrt{n}$

BLM scales for DIS moments

Three-Jet Rate
The scale μ/\sqrt{s} according to the BLM (dashed-dotted), PMS (dashed), FAC (full), and \sqrt{y} (dotted) procedures for the three-jet rate in e^+e^- annihilation, as computed by Kramer and Lampe [10]. Notice the strikingly different behavior of the BLM scale from the PMS and FAC scales at low y . In particular, the latter two methods predict increasing values of μ as the jet invariant mass $\mathcal{M} < \sqrt{(ys)}$ decreases.

Other Jet Observables: Rathsman

July 2006 $_{104}$

Features of BLM Scale Setting

- All terms associated with nonzero beta function summed into running coupling
- Conformal series preserved
- BLM Scale Q^{*} sets the number of active flavors
- Correct analytic dependence in the quark mass
- Only nf dependence required to determine renormalization scale at NLO
- Result is scheme independent: Q^{*} has exactly the correct dependence to compensate for change of scheme
- Correct Abelian limit!

QCD Phenomenology

Stan Brodsky, SLAC NNPSS

 $\lim N_C \to 0$ at fixed $\alpha = C_F \alpha_s, n_\ell = n_F / C_F$

$QCD \rightarrow Abelian$ Gauge Theory

Analytic Feature of Huet, sjb $\frac{1}{4}$ *SU(Nc) Gauge Theory*

^e+*e*[−] [→] *^p*# *^p*

Relate Observables to Each Other

- Eliminate intermediate scheme
- No scale ambiguity
- Transitive!
- Commensurate Scale Relations
- Example: Generalized Crewther Relation

QCD Phenomenology

$$
\frac{\alpha_R(Q)}{\pi} = \frac{\alpha_{\overline{\text{MS}}}(Q)}{\pi} + \left(\frac{\alpha_{\overline{\text{MS}}}(Q)}{\pi}\right)^2 \left[\left(\frac{41}{8} - \frac{11}{3}\zeta_3\right) C_A - \frac{1}{8}C_F + \left(-\frac{11}{12} + \frac{2}{3}\zeta_3\right) f \right] \n+ \left(\frac{\alpha_{\overline{\text{MS}}}(Q)}{\pi}\right)^3 \left\{ \left(\frac{90445}{2592} - \frac{2737}{108}\zeta_3 - \frac{55}{18}\zeta_5 - \frac{121}{432}\pi^2\right) C_A^2 + \left(-\frac{127}{48} - \frac{143}{12}\zeta_3 + \frac{55}{3}\zeta_5\right) C_A C_F - \frac{23}{32}C_F^2 \n+ \left[\left(-\frac{970}{81} + \frac{224}{27}\zeta_3 + \frac{5}{9}\zeta_5 + \frac{11}{108}\pi^2\right) C_A + \left(-\frac{29}{96} + \frac{19}{6}\zeta_3 - \frac{10}{3}\zeta_5\right) C_F \right] f \n+ \left(\frac{151}{162} - \frac{19}{27}\zeta_3 - \frac{1}{108}\pi^2\right) f^2 + \left(\frac{11}{144} - \frac{1}{6}\zeta_3\right) \frac{d^{abc}d^{abc}}{C_F d(R)} \frac{\left(\sum_f Q_f\right)^2}{\sum_f Q_f^2} \right\}.
$$

$$
\frac{\alpha_{g_1}(Q)}{\pi} = \frac{\alpha_{\overline{\text{MS}}}(Q)}{\pi} + \left(\frac{\alpha_{\overline{\text{MS}}}(Q)}{\pi}\right)^2 \left[\frac{23}{12}C_A - \frac{7}{8}C_F - \frac{1}{3}f\right] \n+ \left(\frac{\alpha_{\overline{\text{MS}}}(Q)}{\pi}\right)^3 \left\{ \left(\frac{5437}{648} - \frac{55}{18}\zeta_5\right) C_A^2 + \left(-\frac{1241}{432} + \frac{11}{9}\zeta_3\right) C_A C_F + \frac{1}{32}C_F^2 + \left[\left(-\frac{3535}{1296} - \frac{1}{2}\zeta_3 + \frac{5}{9}\zeta_5\right) C_A + \left(\frac{133}{864} + \frac{5}{18}\zeta_3\right) C_F\right] f + \frac{115}{648}f^2 \right\}.
$$

Apply BLM, Eliminate MSbar, Find Amazing Simplification

QCD Phenomenology
108 Stan Brodsky, SLAC
$$
\int_0^1 dx \left[g_1^{ep}(x, Q^2) - g_1^{en}(x, Q^2) \right] \equiv \frac{1}{3} \left| \frac{g_A}{g_V} \right| \left[1 - \frac{\alpha_{g_1}(Q)}{\pi} \right]
$$

$$
\frac{\alpha_{g_1}(Q)}{\pi} = \frac{\alpha_R(Q^*)}{\pi} - \left(\frac{\alpha_R(Q^{**})}{\pi}\right)^2 + \left(\frac{\alpha_R(Q^{***})}{\pi}\right)^3
$$

Geometric Series in Conformal QCD

Generalized Crewther Relation

add Light-by-Light Lu, Kataev, Gabadadze, Sjb

 \int uly 2006 109

Generalized Crewther Relation

$$
[1 + \frac{\alpha_R(s^*)}{\pi}][1 - \frac{\alpha_{g_1}(q^2)}{\pi}] = 1
$$

$$
\sqrt{s^*} \simeq 0.52Q
$$

Conformal relation true to all orders in perturbation theory

Transtiuit property - Renormalization Group $A \Rightarrow C \Rightarrow B$ $A \Rightarrow B$ $Same$ es $\frac{1}{\sqrt{2\pi}}$ Relation between observable AGB Independent of choice of G
Independent of scheme or
Treavent cal convertion!

PMS violates transitivity

July 2006 $_{\text{III}}$

Leading Order Commensurate Scales

Translate between schemes at LO

Production of four heavy-quark jets

Sz = 0

Unification in Physical Schemes

"PHYSICAL RENORMALIZATION SCHEMES AND GRAND UNIFICATION" M.B. and Stanley J. Brodsky. **Phys.Rev.D69:095007,2004**

$$
\alpha_i(Q) = \frac{\alpha_i(Q_0)}{1 + \hat{\Pi}_i(Q) - \hat{\Pi}_i(Q_0)} \qquad \text{i=1,2,3}
$$

$$
\hat{\Pi}_i(Q) = \frac{\alpha_i}{4\pi} \sum_p \beta_i^{(p)} \left(L_{s(p)}(Q^2/m_p^2) + \cdots \right)
$$

"log-like" function:

 $L_{s(p)} \approx \log(e^{\eta_p} + Q^2/m_p^2)$

$$
\eta_p = 8/3, 5/3, 40/21
$$

For spin s(p) = 0, $\frac{1}{2}$, and 1

Elegant and natural formalism for all threshold effects

July 2006 $_{115}$

The Pinch Technique

(Cornwall, Papavassiliou)

Analyticity and Mass Thresholds

MS does not have automatic decoupling of heavy particles

Must define a set of schemes in each desert region and match $\alpha_s^{(f)}(M_Q) = \alpha_s^{(f+1)}(M_Q)$ *f* Q ^{*j* α _{*s*}} $\alpha_s^{(f)}(M_g) = \alpha_s^{(f+1)}(M_g)$

- The coupling has discontinuous derivative at the matching point
- At higher orders the coupling itself becomes discontinuous!
- Does not distinguish between spacelike and timelike momenta

"AN ANALYTIC EXTENSION OF THE MS-BAR RENORMALIZATION SCHEME" S. Brodsky, M. Gill, M. Melles, J. Rathsman. **Phys.Rev.D58:116006,1998** 6

QCD Phenomenology

118

Unification in Physical Schemes

- Smooth analytic threshold behavior with automatic decoupling
- More directly reflects the unification of the forces
- Higher "unification" scale than usual

General Structure of the Three-Gluon Vertex BLM and Non-Abelian QCD

3 index tensor $\hat{\Gamma}_{\mu\nu\rho\mu\rho}$ built out of $g_{\mu\nu}$ and with $p_1 + p_2 + p_3 = 0$ $1 \mu_2 \mu_3$ $\hat{\Gamma}_{\mu_1\mu_2\mu_3}$ built out of $|{\cal S}_{\mu\nu}|$ and p_1, p_2, p_3

\Rightarrow 14 basis tensors and form factors

The Gauge Invariant Three Gluon Vertex

 $July 2006$

Summary of Supersymmetric Relations

NNPSS

22 Stan Brodsky, SLAC

Multi-scale Renormalization of the Three-Gluon Vertex

3 Scale Effective Charge

$$
\widetilde{\alpha}(a,b,c) \equiv \frac{\widetilde{g}^2(a,b,c)}{4\pi}
$$

(First suggested by H.J. Lu)

$$
\frac{1}{\widetilde{\alpha}(a,b,c)} = \frac{1}{\alpha_{bare}} + \frac{1}{4\pi} \beta_0 \left(L(a,b,c) - \frac{1}{\varepsilon} + \cdots \right)
$$

$$
\frac{1}{\widetilde{\alpha}(a,b,c)} = \frac{1}{\widetilde{\alpha}(a_0,b_0,c_0)} + \frac{1}{4\pi} \beta_0 \left[L(a,b,c) - L(a_0,b_0,c_0) \right]
$$

 $L(a,b,c) = 3$ -scale "log-like" function $L(a,a,a) = log(a)$

 \int uly 2006 124

3 Scale Effective Scale

$$
L(a,b,c) \equiv \log \left(Q_{\text{eff}}^2(a,b,c)\right) + i \operatorname{Im} L(a,b,c)
$$

Governs strength of the three-gluon vertex

$$
\frac{1}{\widetilde{\alpha}(a,b,c)} = \frac{1}{\widetilde{\alpha}(a_0,b_0,c_0)} + \frac{1}{4\pi} \beta_0 \big[L(a,b,c) - L(a_0,b_0,c_0) \big]
$$

$$
\widehat{\Gamma}_{\mu_1\mu_2\mu_3} \propto \sqrt{\widetilde{\alpha}(a,b,c)}
$$

Generalization of the BLM scale to the 3-gluon vetex Generalization of BLM Scale to 3-Gluon Vertex

 $July 2006$ $_{125}$

Properties of the Effective Scale

$$
Q_{eff}^{2}(a,b,c) = Q_{eff}^{2}(-a,-b,-c)
$$

\n
$$
Q_{eff}^{2}(\lambda a, \lambda b, \lambda c) = |\lambda| Q_{eff}^{2}(a,b,c)
$$

\n
$$
Q_{eff}^{2}(a,a,a) = |\alpha|
$$

\n
$$
Q_{eff}^{2}(a,-a,-a) \approx 5.54 |\alpha|
$$

\n
$$
Q_{eff}^{2}(a,a,c) \approx 3.08 |\alpha| \text{ for } |a| > |c|
$$

\n
$$
Q_{eff}^{2}(a,-a,c) \approx 22.8 |\alpha| \text{ for } |a| > |c|
$$

\n
$$
Q_{eff}^{2}(a,b,c) \approx 22.8 \frac{|\alpha|}{|\alpha|} \text{ for } |a| > |b|, |\alpha|
$$

Surprising dependence on Invariants

July 200 6

Stan Brodsky, SLAC NNPSS QCD Phenomenology

The Effective Scale The Effective Scale The Effective Scale

NNPSS
July 2006 227

Future Directions

Gauge-invariant four gluon vertex

 $L_4(p_1, p_2, p_3, p_4)$

 $\ Q^2_{4\, eff} (p_{\scriptscriptstyle 1}^{}, p_{\scriptscriptstyle 2}^{}, p_{\scriptscriptstyle 3}^{}, p_{\scriptscriptstyle 4}^{})$

Hundreds of form factors!

Summary and Future

• *Multi-scale analytic* renormalization based on *physical, gauge-invariant* Green's functions

• *Optimal* improvement of perturbation theory with *no scale-ambiguity* since physical kinematic invariants are the arguments of the (multi-scale) couplings

NPSS QCD Phenomenology

Stan Brodsky, SLAC

Conventional renormalization scale-setting method:

- Guess arbitrary renormalization scale and take arbitrary range. Wrong for QED and Precision Electroweak.
- Prediction depends on choice of renormalization scheme
- Variation of result with respect to renormalization scale only sensitive to nonconformal terms; no information on genuine (conformal) higher order terms
- Conventional procedure has no scientific basis.
- FAC and PMS give unphysical results.
- Renormalization scale not arbitrary: Analytic constraint from flavor thresholds

QCD Phenomenology

Stan Brodsky, SLAC NNPSS

Use Physical Scheme to Characterize QCD Coupling

- Use Observable to define QCD coupling or Pinch Scheme
- Analytic: Smooth behavior as one crosses new quark threshold
- New perspective on grand unification

Binger, Sjb

NNPSS

Tuly 2006 131

Factorization scale *dµ*renormalization

 μ factorization $\neq \mu$ renormalization

- Arbitrary separation of soft and hard physics *dO* not
- Dependence on factorization scale not associated with beta function - present even in conformal theory *d* factorization scale not ass *dµ*renormalization
- Keep factorization scale separate from renormalization scale $\frac{dO}{dO} = 0$
- Residual dependence when one works in fixed order in perturbation theory. *dµ*factorization $chation$ _{th}

QCD Phenomenology

Stan Brodsky, SLAC

Use BLM!

- Satisfies Transitivity, all aspects of Renormalization Group; scheme independent
- Analytic at Flavor Thresholds
- Preserves Underlying Conformal Template
- Physical Interpretation of Scales; Multiple Scales
- Correct Abelian Limit $(N_c = 0)$
- Eliminates unnecessary source of imprecision of PQCD predictions
- Commensurate Scale Relations: Fundamental Tests of QCD free of renormalization scale and scheme ambiguities
- BLM used in many applications, QED, LGTH, BFKL, ...

QCD Phenomenology

Stan Brodsky, SLAC NNPSS

Light-Front QCD Phenomenology

- Hidden color, Intrinsic glue, sea, Color Transparency
- Near Conformal Behavior of LFWFs at Short Distances; PQCD constraints
- Vanishing anomalous gravitomagnetic moment
- Relation between edm and anomalous magnetic moment
- Cluster Decomposition Theorem for relativistic systems
- OPE: DGLAP, ERBL evolution; invariant mass scheme

QCD Phenomenology

Stan Brodsky, SLAC NNPSS

New Perspectives for QCD from AdS/CFT

- LFWFs: Fundamental description of hadrons at amplitude level
- Holographic Model from AdS/CFT : Confinement at large distances and conformal behavior at short distances
- Model for LFWFs, meson and baryon spectra: many applications!
- New basis for diagonalizing Light-Front Hamiltonian
- Physics similar to MIT bag model, but covariant. No problem with support $0 < x < I$.
- Quark Interchange dominant force at short distances

Essential to test QCD

- J-PARC
- GSI antiprotons
- 12 GeV Jlab
- BaBar/Belle: ISR, two-gamma, timelike DVCS
- RHIC/LHC Nuclear Collisions; LHCb
- electron-proton, electron-nucleus collisions

QCD Phenomenology

136

NNPSS
July 2006 ¹³⁶ ¹³⁶ Stan Brodsky, SLAC

Novel Tests of QCD at GSI Polarized antiproton Beam Secondary Beams

- Characteristic momentum scale of QCD: 300 MeV
- Many Tests of AdS/CFT predictions possible
- Exclusive channels: Conformal scaling laws, quark-interchange
- pp scattering: fundamental aspects of nuclear force
- Color transparency: Coherent color effects
- Nuclear Effects, Hidden Color, Anti-Shadowing
- Anomalous heavy quark phenomena
- Spin Effects: A_N, A_{NN}

QCD Phenomenology

Stan Brodsky, SLAC NNPSS

Hadron Dynamics at the Amplitude Level

- DIS studies have primarily focussed on probability distributions: integrated and unintegrated.
- Test QCD at the amplitude level: Phases, multi-parton correlations, spin, angular momentum, exclusive amplitudes
- Impact of ISI and FSI: Single Spin Asymmetries, Diffractive Deep Inelastic Scattering, Shadowing, Antishadowing
- Hadron wavefunctions: Fundamental QCD Dynamics
- Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

QCD Phenomenology

NNPSS
July 2006 ¹³⁸ Stan Brodsky, SLAC