QCD Phenomenology and Nucleon Structure

Stan Brodsky, SLAC

Lecture III

National Nuclear Physics Summer School

QCD Phenomenology

Impact of AdS/CFT on QCD

in collaboration with Guy de Teramond

QCD Phenomenology

Ads/CFT and QCD

Mapping of Poincare' and Conformal SO(4,2) symmetries of 3+1 space to AdS5 space

- Representation of <u>Semi-Classical</u> QCD
- Confinement at Long Distances and Conformal Behavior at short distances
- Non-Perturbative Derivation of Dimensional Counting Rules (Strassler and Polchinski)
- Hadron Spectra, Regge Trajectories, Light-Front Wavefunctions
- Goal: A first approximant to physical QCD

QCD Phenomenology

Entire light quark baryon spectrum

Fig: Predictions for the light baryon orbital spectrum for Λ_{QCD} = 0.25 GeV. The **56** trajectory corresponds to *L* even *P* = + states, and the **70** to *L* odd *P* = - states.

Guy de Teramond SJB

NNPSS July 2006 QCD Phenomenology

SU(6)	S	L	Baryon State
	1		$x_{1}^{+}(0,0,0)$
56	$\frac{1}{2}$	0	$N = \frac{1}{2} + (939)$
	$\frac{3}{2}$	0	$\Delta \frac{3}{2}^{+}(1232)$
70	$\frac{1}{2}$	1	$N\frac{1}{2}^{-}(1535) N\frac{3}{2}^{-}(1520)$
	$\frac{3}{2}$	1	$N\frac{1}{2}^{-}(1650) N\frac{3}{2}^{-}(1700) N\frac{5}{2}^{-}(1675)$
	$\frac{1}{2}$	1	$\Delta \frac{1}{2}^{-}(1620) \ \Delta \frac{3}{2}^{-}(1700)$
56	$\frac{1}{2}$	2	$N\frac{3}{2}^+(1720) N\frac{5}{2}^+(1680)$
	$\frac{3}{2}$	2	$\Delta \frac{1}{2}^+(1910) \ \Delta \frac{3}{2}^+(1920) \ \Delta \frac{5}{2}^+(1905) \ \Delta \frac{7}{2}^+(1950)$
70	$\frac{1}{2}$	3	$N\frac{5}{2}^{-}$ $N\frac{7}{2}^{-}$
	$\frac{3}{2}$	3	$N\frac{3}{2}^{-}$ $N\frac{5}{2}^{-}$ $N\frac{7}{2}^{-}(2190)$ $N\frac{9}{2}^{-}(2250)$
	$\frac{1}{2}$	3	$\Delta \frac{5}{2}^{-}(1930) \ \Delta \frac{7}{2}^{-}$
56	$\frac{1}{2}$	4	$N\frac{7}{2}^+$ $N\frac{9}{2}^+(2220)$
	$\frac{3}{2}$	4	$\Delta \frac{5}{2}^+$ $\Delta \frac{7}{2}^+$ $\Delta \frac{9}{2}^+$ $\Delta \frac{11}{2}^+$ (2420)
70	$\frac{1}{2}$	5	$N\frac{9}{2}^{-}$ $N\frac{11}{2}^{-}$
	$\frac{3}{2}$	5	$N\frac{7}{2}^{-}$ $N\frac{9}{2}^{-}$ $N\frac{11}{2}^{-}$ (2600) $N\frac{13}{2}^{-}$

• SU(6) multiplet structure for N and Δ orbital states, including internal spin S and L.

QCD Phenomenology

NNPSS July 2006 QCD Phenomenology

Space-like pion form factor in holographic model for $\Lambda_{QCD}=0.2$ GeV.

QCD Phenomenology

QCD Lagrangían

QCD:
$$N_C = 3$$
 Quarks: 3_C Gluons: 8_C .
 $\alpha_s = \frac{g^2}{4\pi}$ is dimensionless

Classical Lagrangian is scale invariant for massless quarks

If
$$\beta = \frac{d\alpha_s(Q^2)}{d\log Q^2} = 0$$
 then QCD is invariant under conformal trans-
formations:

Parisi

QCD Phenomenology

- Polchinski & Strassler: AdS/CFT builds in conformal symmetry at short distances, counting, rules for form factors and hard exclusive processes; non-perturbative derivation
- Goal: Use AdS/CFT to provide models of hadron structure: confinement at large distances, near conformal behavior at short distances
- Holographic Model: Initial "semi-classical" approximation to QCD: Remarkable agreement with light hadron spectroscopy
- Use AdS/CFT wavefunctions as expansion basis for diagonalizing H^{LF}_{QCD}; variational methods

QCD Phenomenology

Ads/QCD

- Semi-Classical approximation to massless QCD
- No particle creation, absorption
- Coupling is constant, $\beta = 0$
- Conformal symmetry broken by confinement

Strongly Coupled Conformal QCD and Holography

- Conformal Theories are invariant under the Poincaré and conformal transformations with $M^{\mu\nu}$, P^{μ} , D, K^{μ} , the generators of SO(4,2).
- QCD appears as a nearly-conformal theory in the energy regimes accessible to experiment. Invariance of conformal QCD is broken by quark masses and quantum loops. For $\beta = d\alpha_s (Q^2)/dQ^2$, QCD is a conformal theory: Parisi, Phys. Lett. B **39**, 643 (1972).
- Growing theoretical and empirical evidence that $\alpha_s(Q^2)$ has an IR fixed point: von Smekal, Alkofer and Hauck, arXiv:hep-ph/9705242; Alkofer, Fischer and Llanes-Estrada, hep-th/0412330; Deur, Burkert, Chen and Korsch, hep-ph/0509113...
- Phenomenological success of dimensional scaling laws for exclusive processes

$$d\sigma/dt \sim 1/s^{n-2}, \quad n = n_A + n_B + n_C + n_D,$$

implies QCD is a strongly coupled conformal theory at moderate but not asymptotic energies Brodsky and Farrar, Phys. Rev. Lett. **31**, 1153 (1973); Matveev *et al.*, Lett. Nuovo Cim. **7**, 719 (1973).

NNPSS /	
July 2006	

QCD Phenomenology

Constituent Counting Rules

$$\frac{d\sigma}{dt}(s,t) = \frac{F(\theta_{\rm Cm})}{s^{[n_{\rm tot}-2]}} \qquad s = E_{\rm Cm}^2$$

- $F_H(Q^2) \sim [\frac{1}{Q^2}]^{n_H 1} \qquad -t = Q^2$
- Point-like quark and gluon constituents plus scale-invariant interactions
 Farrar, sjb; Matveev et al
- Fall-off of Amplitude measures degree of compositeness (twist)
- Reflects near-Conformal Invariance of QCD
- PQCD: Logarithmic Modification by running coupling and Evolution Equations
 Lepage, sjb; Efremov, Radyushkin
- Angular and Spin Dependence Fundamental Wavefunctions: Hadron Distribution Amplitudes $\phi_H(x_i, Q)$

QCD Phenomenology

Proton Form Factor

Test of PQCD Scaling

Constituent counting rules

Farrar, sjb; Muradyan, Matveev, Taveklidze

Conformal Invariance:

 $\frac{d\sigma}{dt}(\gamma p \to MB) = \frac{F(\theta_{cm})}{s^7}$

QCD Phenomenology

Quark-Counting: $\frac{d\sigma}{dt}(pp \to pp) = \frac{F(\theta_{CM})}{s^{10}}$ $n = 4 \times 3 - 2 = 10$

NNPSS July 2006 QCD Phenomenology

ALEPH Collaboration / Physics Letters B 569 (2003) 140–150

Measured distribution for $\gamma \gamma \rightarrow \pi^+ \pi^-$ (left) and $\gamma \gamma \rightarrow K^+ K^-$ (right) as a function of $W_{\gamma\gamma}$. Also shown are results from TPC/Two-Gamma [10], the result of a fit to the ALEPH data and a leading twist QCD calculation with two alternative normalizations as described in the text.

QCD Phenomenology

Why do dimensional counting rules work so well?

- PQCD predicts log corrections from powers of α_s , logs, pinch contributions
- QCD coupling evaluated in intermediate regime.
- IR Fixed point! DSE: Alkofer, von Smekal et al.
- QED, EW -- define coupling from observable, predict other observable
- Underlying Conformal Symmetry of QCD Lagrangian

QCD Phenomenology

Define QCD Coupling from Observable Grunberg

$$R_{e^+e^- \to X}(s) \equiv 3\Sigma_q e_q^2 \left[1 + \frac{\alpha_R(s)}{\pi}\right]$$

$$\Gamma(\tau \to X e \nu)(m_{\tau}^2) \equiv \Gamma_0(\tau \to u \bar{d} e \nu) \times [1 + \frac{\alpha_{\tau}(m_{\tau}^2)}{\pi}]$$

Relate observable to observable at commensurate scales

H.Lu, sjb

QCD Phenomenology

QCD Phenomenology

Scale Transformations

• Isomorphism of SO(4,2) of conformal QCD with the group of isometries of AdS space

$$ds^{2} = \frac{R^{2}}{z^{2}}(\eta_{\mu\nu}dx^{\mu}dx^{\nu} - dz^{2}),$$
 invariant measure

 $x^{\mu} \rightarrow \lambda x^{\mu}, \ z \rightarrow \lambda z$, maps scale transformations into the holographic coordinate z.

- AdS mode in z is the extension of the hadron wf into the fifth dimension.
- Different values of z correspond to different scales at which the hadron is examined.

$$x^2 \to \lambda^2 x^2, \quad z \to \lambda z.$$

 $x^2 = x_\mu x^\mu$: invariant separation between quarks

• The AdS boundary at $z \to 0$ correspond to the $Q \to \infty$, UV zero separation limit.

NNPSS July 2006 QCD Phenomenology

QCD Phenomenology

Guy de Teramond SJB

- Use mapping of conformal group SO(4,2) to AdS5
- Scale Transformations represented by wavefunction $\psi(z)$ in 5th dimension $x_{\mu}^2 \rightarrow \lambda^2 x_{\mu}^2$ $z \rightarrow \lambda z$
- Holographic model: Confinement at large distances and conformal symmetry in interior $0 < z < z_0$
- Match solutions at small z to conformal dimension of hadron wavefunction at short distances ψ(z) ~ z^Δ at z → 0
- Truncated space simulates "bag" boundary conditions

$$\psi(z_0)=0$$

 $z_0 = \frac{1}{\Lambda_{QCD}}$

QCD Phenomenology

Identify hadron by its interpolating operator at $z \rightarrow 0$

24

Entire light quark baryon spectrum

Fig: Predictions for the light baryon orbital spectrum for Λ_{QCD} = 0.25 GeV. The **56** trajectory corresponds to *L* even *P* = + states, and the **70** to *L* odd *P* = - states.

Guy de Teramond SJB

NNPSS July 2006 QCD Phenomenology

Action for scalar field in AdS5

$$S[\Phi] = \kappa' \int d^4x dz \sqrt{g} \left[g^{\ell m} \partial_\ell \Phi^* \partial_m \Phi - \mu^2 \Phi^* \Phi \right]$$

where
$$[\kappa'] = L^{-2}$$
 $g^{\ell m} = \frac{z^2}{R^2} \eta^{\ell m} \sqrt{g} = R^5 / z^5$

Action is invariant under scale transformations

$$x^{\mu} \to \lambda x^{\mu}, \quad z \to \lambda z.$$

$$\Phi(x^\ell) = \Phi(\lambda x^\ell)$$

Variation wrt Φ

$$\frac{1}{\sqrt{g}}\frac{\partial}{\partial x^{\ell}}\left(\sqrt{g}\ g^{\ell m}\frac{\partial}{\partial x^m}\Phi\right) + \mu^2\Phi = 0$$

NNPSS July 2006 QCD Phenomenology

Solutions of form: $\Phi(x,z) = e^{-iP \cdot x} f(z)$ $P_{\mu}P^{\mu} = \mathcal{M}^2$

$$S = -\kappa R^3 \int \frac{dz}{z^3} \left[(\partial_z f)^2 - \mathcal{M}^2 f^2 + \frac{(\mu R)^2}{z^2} f^2 \right]$$

Variation of S wrt f :

$$z^{5}\partial_{z}\left(\frac{1}{z^{3}}\partial_{z}f\right) + z^{2}\mathcal{M}^{2}f - (\mu R)^{2}f = 0.$$
$$\left[z^{2}\partial_{z}^{2} - 3z\partial_{z} + z^{2}\mathcal{M}^{2} - (\mu R)^{2}\right]f = 0$$

Introduce confinement, break conformal invariance

P-S Boundary Condition $f(z = \frac{1}{\Lambda_{QCD}}) = 0$

Normalization in truncated space $R^3 \int_0^{\Lambda_{\rm QCD}^{-1}} \frac{dz}{z^3} f^2(z) = 1$ NNPSS
July 2006QCD Phenomenology $\int_0^{10} \frac{dz}{z^3} f^2(z) = 1$ 2727

Classical solution

$$f(z) = \frac{\sqrt{2}\Lambda_{\rm QCD}}{R^{3/2}J_{\alpha+1}(\beta_{\alpha,k})} z^2 J_{\alpha}(z\beta_{\alpha,k}\Lambda_{\rm QCD}),$$

where
$$\alpha = \sqrt{4 + (\mu R)^2}$$
.

$$S = -\kappa R^3 \int_0^{\Lambda_{\text{QCD}}^{-1}} \frac{dz}{z^5} f \left[-z^5 \partial_z \left(\frac{1}{z^3} \partial_z \right) - z^2 \mathcal{M}^2 + (\mu R)^2 \right] f + \kappa R^3 \lim_{z \to 0} \frac{1}{z^3} f \partial_z f$$

First term vanishes leaving $S_{class} = \kappa R^3 \lim_{z \to 0} \frac{1}{z^3} f \partial_z f.$

Breitenlohner - Freedman bound $\alpha \ge 0$ NNPSS QCD Phenomenology State S

Identify $\alpha = L$ Orbital Angular Momentum, $(\mu R)^2 = -4 + L^2$

• Wave equation in AdS for bound state of two scalar partons with conformal dimension $\Delta=2+L$

$$\left[z^2 \partial_z^2 - 3z \,\partial_z + z^2 \,\mathcal{M}^2 - L^2 + 4\right] \Phi(z) = 0,$$

with solution

$$\Phi(z) = Ce^{-iP \cdot x} z^2 J_L(z\mathcal{M}).$$

- For spin-carrying constituents: $\Delta \to \tau = \Delta \sigma$, $\sigma = \sum_{i=1}^{n} \sigma_i$.
- The twist τ is equal to the number of partons $\tau = n$.
- Two-quark vector meson described by wave equation

$$\left[z^2 \,\partial_z^2 - 3z \,\partial_z + z^2 \mathcal{M}^2 - L^2 + 4\right] \Phi_\mu(z) = 0,$$

with solution

$$\Phi_{\mu}(x,z) = C e^{-iP \cdot x} z^2 J_L(z\mathcal{M}) \epsilon_{\mu}.$$

QCD Phenomenology

Match fall-off at small z to Conformal Dimension of State at short distances

- Pseudoscalar mesons: $\mathcal{O}_{3+L} = \overline{\psi}\gamma_5 D_{\{\ell_1} \dots D_{\ell_m\}}\psi$ ($\Phi_\mu = 0$ gauge).
- 4-*d* mass spectrum from boundary conditions on the normalizable string modes at $z = z_0$, $\Phi(x, z_0) = 0$, given by the zeros of Bessel functions $\beta_{\alpha,k}$: $\mathcal{M}_{\alpha,k} = \beta_{\alpha,k} \Lambda_{QCD}$
- Normalizable AdS modes $\Phi(z)$

Fig: Meson orbital and radial AdS modes for $\Lambda_{QCD}=0.32~{\rm GeV}.$

QCD Phenomenology

QCD Phenomenology

de Teramond, sjb

AdS solution:

$$\Phi(z) = Ce^{-iP \cdot x} z^2 J_\alpha(zM)$$

At large argument of the Bessel function

$$\Phi(x,z) = Ce^{-iP \cdot x} z^{\frac{d}{2}} \sqrt{\frac{2}{\pi z \mathcal{M}}} \cos\left(z\mathcal{M} - \frac{\pi}{4}\sqrt{d^2 + 4l(l+4)} - \frac{\pi}{4}\right).$$

Dirichlet boundary

condition:

$$\Phi(x, z = z_0 = \frac{1}{\Lambda_{QCD}}) = 0$$

$$M(n,l) = \frac{\pi}{2} \left[\frac{1}{2} \left(1 + \sqrt{d^2 + 4 \, l(l+d)} \right) + (2n+1) \right] \Lambda_{QCD}$$

Quadratic Regge Relation

In the large
$$\ell$$
 limit:
 $M^2 = \frac{\pi^2}{4} \ell^2 \Lambda^2_{QCD}$

Independent of n, d

NNPSS July 2006 QCD Phenomenology

Baryon Spectrum

• Baryon: twist-three, dimension $\Delta = \frac{9}{2} + L$

NNPSS

July 2006

$$\mathcal{O}_{\frac{9}{2}+L} = \psi D_{\{\ell_1} \dots D_{\ell_q} \psi D_{\ell_{q+1}} \dots D_{\ell_m}\} \psi, \quad L = \sum_{i=1}^m \ell_i$$

Wave Equation: $\left| \left[z^2 \partial_z^2 - 3z \partial_z + z^2 \mathcal{M}^2 - \mathcal{L}_{\pm}^2 + 4 \right] f_{\pm}(z) = 0 \right|$

with $\mathcal{L}_+ = L + 1$, $\mathcal{L}_- = L + 2$, and solution

$$\Psi(x,z) = Ce^{-iP \cdot x} z^2 \Big[J_{1+L}(z\mathcal{M}) u_+(P) + J_{2+L}(z\mathcal{M}) u_-(P) \Big]$$

• 4-*d* mass spectrum $\Psi(x, z_o)^{\pm} = 0 \implies \text{parallel Regge trajectories for baryons !}$

$$\mathcal{M}_{\alpha,k}^{+} = \beta_{\alpha,k} \Lambda_{QCD}, \quad \mathcal{M}_{\alpha,k}^{-} = \beta_{\alpha+1,k} \Lambda_{QCD}.$$

• Ratio of eigenvalues determined by the ratio of zeros of Bessel functions !

QCD Phenomenology

• μ determined asymptotically by spectral comparison with orbital excitations in the boundary: $\mu = L/R$ and λ are the eigenvalues of the Dirac equation on S^{d+1} :

$$\lambda_{\kappa}R = \pm \left(\kappa + \frac{d}{2} + \frac{1}{2}\right), \quad \kappa = 0, 1, 2...$$

• Baryon: twist-three, dimension $\Delta = \frac{9}{2} + L$

$$\mathcal{O}_{\frac{9}{2}+L} = \psi D_{\{\ell_1} \dots D_{\ell_q} \psi D_{\ell_{q+1}} \dots D_{\ell_m\}} \psi, \quad L = \sum_{i=1}^m \ell_i.$$

• Normalizable AdS fermion mode (lowest KK-mode $\kappa=0$:

$$\begin{split} \Psi_{\alpha,k}(x,z) &= C_{\alpha,k} e^{-iP \cdot x} z^{\frac{5}{2}} \Big[J_{\alpha}(z\beta_{\alpha,k}\Lambda_{QCD}) \ \mu_{+}(P) + J_{\alpha+1}(z\beta_{\alpha,k}\Lambda_{QCD}) \ \mu_{-}(P) \Big]. \end{split}$$
 where $\mu^{-} &= \frac{\gamma^{\mu}P_{\mu}}{P} \mu^{+}, \alpha = 2 + L \text{ and } \Delta = \frac{9}{2} + L. \end{split}$

• 4-d mass spectrum $\Psi(x, z_o)^{\pm} = 0 \implies$ parallel Regge trajectories for baryons !

$$\mathcal{M}_{\nu,n}^+ = \alpha_{\nu,n} \Lambda_{QCD}, \quad \mathcal{M}_{\nu,n}^- = \alpha_{\nu+1,n} \Lambda_{QCD}$$

• Spin- $\frac{3}{2}$ Rarita-Schwinger eq. in AdS similar to spin- $\frac{1}{2}$ in the $\Psi_z = 0$ gauge for polarization along Minkowski coordinates, Ψ_{μ} . See: Volovich, hep-th/9809009.

NNPSS July 2006 QCD Phenomenology

Predictions of AdS/CFT

Only one parameter!

Entire light quark baryon spectrum

PARITY DOUBLING

Fig: Predictions for the light baryon orbital spectrum for Λ_{QCD} = 0.25 GeV. The **56** trajectory corresponds to *L* even *P* = + states, and the **70** to *L* odd *P* = - states.

Guy de Teramond SJB

Stan Brodsky, SLAC

NNPSS July 2006 QCD Phenomenology

Glueball Spectrum

• AdS wave function with effective mass μ :

$$\left[z^2 \partial_z^2 - (d-1)z \partial_z + z^2 \mathcal{M}^2 - (\mu R)^2\right] f(z) = 0,$$

where $\Phi(x,z) = e^{-iP \cdot x} f(z)$ and $P_{\mu}P^{\mu} = \mathcal{M}^2$.

- Glueball interpolating operator with twist -dimension minus spin- two, and conformal dimension $\Delta=4+L$

$$\mathcal{O}_{4+L} = FD_{\{\ell_1} \dots D_{\ell_m\}}F,$$

where $L = \sum_{i=1}^{m} \ell_i$ is the total internal space-time orbital momentum.

• Normalizable scalar AdS mode (d = 4):

$$\Phi_{\alpha,k}(x,z) = C_{\alpha,k} e^{-iP \cdot x} z^2 J_\alpha \left(z \,\beta_{\alpha,a} \Lambda_{QCD} \right)$$

with $\alpha = 2 + L$ and scaling dimension $\Delta = 4 + L$.

	INPSS 🔎	
Ju	ly 2006	

QCD Phenomenology
Glueball Regge trajectories from gauge/string duality and the Pomeron

Henrique Boschi-Filho,^{*} Nelson R. F. Braga,[†] and Hector L. Carrion[‡]

Instituto de Física, Universidade Federal do Rio de Janeiro,

Neumann Boundary Conditions

Dirichlet Boundary Conditions

NNPSS July 2006 QCD Phenomenology

Stan Brodsky, SLAC

37

Substitute

 $f(z) = \left(\frac{z}{R}\right)^{\frac{3}{2}} \phi(z)$

$$\left[-\frac{d^2}{dz^2} + V(z)\right]\phi(z) = \mathcal{M}^2\phi(z)$$

Conformal Kernel $V(z) = -\frac{1-4\alpha^2}{4z^2}$ de Teramond, sjb

HO Kernel
$$V(z) = -\frac{1-4\alpha^2}{4z^2} + \kappa^4 z^2$$
 Karch, et al.

Solutions:

$$\phi_{\alpha}(z) = \kappa^{\alpha+1} \sqrt{\frac{2n!}{(n+\alpha)!}} z^{1/2+\alpha} e^{-\kappa^2 z^2/2} L_n^{\alpha}(\kappa^2 z^2)$$

QCD Phenomenology

Why islpha quantized?

$$S = \lambda \int_{0}^{\infty} d\zeta \left[(\partial_{\zeta} \phi)^{2} - \mathcal{M}^{2} \phi^{2} - \frac{1 - 4\alpha^{2}}{4\zeta^{2}} \phi^{2} + \kappa^{4} z^{2} \phi^{2} \right]$$
$$S[\phi] = S_{class}[\phi] + S_{fluct}[\phi]$$
$$S_{fluct} = \lambda \alpha^{2} \int_{0}^{\infty} \frac{d\zeta}{\zeta^{2}} \phi^{2} = \lambda \kappa^{2} \alpha$$
$$\alpha \neq 0 \text{ solutions}$$

Semí-classical quantization: Fluctuations should leave Z unchanged

$$Z[\phi] \sim e^{iS[\phi]} = e^{iS_{class}[\phi]}.$$

$$S_{fluct} = 2\pi\alpha = 2\pi L$$

Thus $\alpha = L$ is integer $\lambda = 2\pi/\kappa^2$

(Heuristic argument)

Matches integral twist-dimension of state

NNPSS July 2006 QCD Phenomenology

Dírac's Amazing Idea: The "Front Form" Evolve in light-front time!

QCD Phenomenology

Light-Front Wavefunctions

Invariant under boosts! Independent of \mathcal{P}^{μ}

QCD Phenomenology

Mapping between LF(3+1) and AdS₅

NNPSS July 2006 QCD Phenomenology

NNPSS July 2006 QCD Phenomenology

The Form Factor in AdS Space

• Non-conformal metric dual to a confining gauge theory

$$ds^{2} = \frac{R^{2}}{z^{2}} e^{2A(z)} \left(\eta_{\mu\nu} dx^{\mu} dx^{\nu} - dz^{2} \right),$$

where $A(z) \rightarrow 0$ as $z \rightarrow 0$ (Polchinski and Strassler, hep-th/0109174).

• Hadronic matrix element for EM coupling with string mode $\Phi(x, z)$, $x^{\ell} = (x^{\mu}, z)$

$$ig_5 \int d^4x \, dz \, \sqrt{g} \, A^\ell(x,z) \Phi^*_{P'}(x,z) \overleftrightarrow{\partial}_\ell \Phi_P(x,z).$$

• Electromagnetic probe polarized along Minkowski coordinates,

$$A_{\mu} = \epsilon_{\mu} e^{-iQ \cdot x} J(Q, z), \quad A_z = 0,$$

with

$$J(Q, z) = zQK_1(zQ), \quad J(Q = 0, z) = J(Q, z = 0) = 1$$

• Hadronic modes are plane waves along the Poincaré coordinates with four-momentum P^{μ} and invariant mass $P_{\mu}P^{\mu}=\mathcal{M}^2$

$$\Phi(x,z) = e^{-iP \cdot x} f(z), \quad f(z) \to z^{\Delta}, \ z \to 0.$$

NNPSS July 2006 QCD Phenomenology

- Propagation of external perturbation suppressed inside AdS.
- At large enough $Q \sim r/R^2$, the interaction occurs in the large-r conformal region. Important contribution to the FF integral from the boundary near $z \sim 1/Q$.

• Consider a specific AdS mode $\Phi^{(n)}$ dual to an n partonic Fock state $|n\rangle$. At small z, $\Phi^{(n)}$ scales as $\Phi^{(n)} \sim z^{\Delta_n}$. Thus:

$$F(Q^2) \rightarrow \left[\frac{1}{Q^2}\right]^{\tau-1}, \qquad \begin{array}{c} \text{General result from} \\ \text{AdS/CFT} \end{array}$$

where $\tau = \Delta_n - \sigma_n$, $\sigma_n = \sum_{i=1}^n \sigma_i$. The twist is equal to the number of partons, $\tau = n$.

NNPSS July 2006 QCD Phenomenology

Space-like pion form factor in holographic model for $\Lambda_{QCD} = 0.2$ GeV.

Contributions from Feynman large-x and high transverse momenta regimes

QCD Phenomenology

Holographic Model for QCD Light-Front Wavefunctions

Drell-Yan-West form factor

$$F(q^2) = \sum_{q} e_q \int_0^1 dx \int \frac{d^2 \vec{k}_\perp}{16\pi^3} \psi_{P'}^*(x, \vec{k}_\perp - x\vec{q}_\perp) \psi_P(x, \vec{k}_\perp).$$

• Fourrier transform to impact parameter space \vec{b}_{\perp}

$$\psi(x,\vec{k}_{\perp}) = \sqrt{4\pi} \int d^2 \vec{b}_{\perp} \; e^{i\vec{b}_{\perp}\cdot\vec{k}_{\perp}} \widetilde{\psi}(x,\vec{b}_{\perp})$$

• Find ($b=|ec{b}_{\perp}|$) :

$$F(q^2) = \int_0^1 dx \int d^2 \vec{b}_\perp e^{ix\vec{b}_\perp \cdot \vec{q}_\perp} |\tilde{\psi}(x,b)|^2 \qquad \text{Soper}$$
$$= 2\pi \int_0^1 dx \int_0^\infty b \, db \, J_0 \left(bqx\right) \, \left|\tilde{\psi}(x,b)\right|^2,$$

QCD Phenomenology

Two parton case

• Change the integration variable $\zeta = |ec{b}_{\perp}| \sqrt{x(1-x)}$

$$F(Q^2) = 2\pi \int_0^1 \frac{dx}{x(1-x)} \int_0^{\zeta_{max} = \Lambda_{\text{QCD}}^{-1}} \zeta \, d\zeta \, J_0\left(\frac{\zeta Qx}{\sqrt{x(1-x)}}\right) \left|\widetilde{\psi}(x,\zeta)\right|^2,$$

• Compare with AdS form factor for arbitrary Q. Find:

$$J(Q,\zeta) = \int_0^1 dx J_0\left(\frac{\zeta Qx}{\sqrt{x(1-x)}}\right) = \zeta Q K_1(\zeta Q),$$

the solution for the electromagnetic potential in AdS space, and

$$\widetilde{\psi}(x,\vec{b}_{\perp}) = \frac{\Lambda_{\rm QCD}}{\sqrt{\pi}J_1(\beta_{0,1})}\sqrt{x(1-x)}J_0\left(\sqrt{x(1-x)}|\vec{b}_{\perp}|\beta_{0,1}\Lambda_{QCD}\right)\theta\left(\vec{b}_{\perp}^2 \le \frac{\Lambda_{\rm QCD}^{-2}}{x(1-x)}\right)$$

the holographic LFWF for the valence Fock state of the pion $\psi_{\overline{q}q/\pi}$.

• The variable ζ , $0 \leq \zeta \leq \Lambda_{QCD}^{-1}$, represents the scale of the invariant separation between quarks and is also the holographic coordinate $\zeta = z$!

NNPSS July 2006 QCD Phenomenology

Mapping between LF(3+1) and AdS₅

NNPSS July 2006 QCD Phenomenology

G. de Teramond and sjb

Map AdS/CFT to 3+1 LF Theory

Effective radial equation:

$$\left[-\frac{d^2}{d\zeta^2} + V(\zeta)\right]\phi(\zeta) = \mathcal{M}^2\phi(\zeta)$$
$$\zeta^2 = x(1-x)\mathbf{b}_{\perp}^2.$$

Effective conformal potential: $V(\zeta$

$$V(\zeta) = -\frac{1 - 4L^2}{4\zeta^2}.$$

General solution:

$$\widetilde{\psi}_{L,k}(x, \vec{b}_{\perp}) = B_{L,k} \sqrt{x(1-x)}$$
$$J_L\left(\sqrt{x(1-x)} | \vec{b}_{\perp} | \beta_{L,k} \Lambda_{\text{QCD}}\right) \theta\left(\vec{b}_{\perp}^2 \le \frac{\Lambda_{\text{QCD}}^{-2}}{x(1-x)}\right),$$

NNPSS July 2006 QCD Phenomenology

AdS/CFT Prediction for Meson LFWF

Two-parton holographic LFWF in impact space $\widetilde{\psi}(x,\zeta)$ for $\Lambda_{QCD} = 0.32$ GeV: (a) ground state $L = 0, \ k = 1$; (b) first orbital exited state $L = 1, \ k = 1$; (c) first radial exited state $L = 0, \ k = 2$. The variable ζ is the holographic variable $z = \zeta = |b_{\perp}| \sqrt{x(1-x)}$.

$$\widetilde{\psi}(x,\zeta) = \frac{\Lambda_{\rm QCD}}{\sqrt{\pi}J_1(\beta_{0,1})} \sqrt{x(1-x)} J_0\left(\zeta\beta_{0,1}\Lambda_{QCD}\right) \theta\left(z \le \Lambda_{\rm QCD}^{-1}\right)$$

QCD Phenomenology

AdS/CFT Predictions for Meson LFWF $\psi(x,b_{\perp})$

Truncated Space

Harmonic Oscillator

QCD Phenomenology

NNPSS July 2006 QCD Phenomenology

General n-parton case

• Form factor in AdS is the overlap of normalizable modes dual to the incoming and outgoing hadrons Φ_P and $\Phi_{P'}$ with the non-normalizable mode J(Q, z) dual to the external source

$$F(Q^2) = R^3 \int_0^\infty \frac{dz}{z^3} e^{3A(z)} \Phi_{P'}(z) J(Q, z) \Phi_P(z).$$

Polchinski and Strassler, hep-th/0209211

• Integrate Soper formula over angles:

$$F(q^2) = 2\pi \int_0^1 dx \frac{(1-x)}{x} \int \zeta d\zeta J_0\left(\zeta q \sqrt{\frac{1-x}{x}}\right) \tilde{\rho}(x,\zeta).$$

• Transversality variable

$$\zeta = \sqrt{\frac{x}{1-x}} \Big| \sum_{j=1}^{n-1} x_j \mathbf{b}_{\perp j} \Big|.$$

• Compare AdS and QCD expressions of FFs for arbitrary Q using identity:

$$\int_0^1 dx J_0\left(\zeta Q \sqrt{\frac{1-x}{x}}\right) = \zeta Q K_1(\zeta Q),$$

the solution for $J(Q,\zeta)$!

QCD Phenomenology

• Define effective single particle transverse density by (Soper, Phys. Rev. D 15, 1141 (1977))

$$F(q^2) = \int_0^1 dx \int d^2 \vec{\eta}_\perp e^{i\vec{\eta}_\perp \cdot \vec{q}_\perp} \tilde{\rho}(x, \vec{\eta}_\perp)$$

• From DYW expression for the FF in transverse position space:

$$\tilde{\rho}(x,\vec{\eta}_{\perp}) = \sum_{n} \prod_{j=1}^{n-1} \int dx_j \, d^2 \vec{b}_{\perp j} \, \delta(1-x-\sum_{j=1}^{n-1} x_j) \, \delta^{(2)} (\sum_{j=1}^{n-1} x_j \vec{b}_{\perp j} - \vec{\eta}_{\perp}) |\psi_n(x_j,\vec{b}_{\perp j})|^2$$

• Compare with the the form factor in AdS space for arbitrary Q:

$$F(Q^2) = R^3 \int_0^\infty \frac{dz}{z^3} e^{3A(z)} \Phi_{P'}(z) J(Q, z) \Phi_P(z)$$

• Holographic variable z is expressed in terms of the average transverse separation distance of the spectator constituents $\vec{\eta} = \sum_{j=1}^{n-1} x_j \vec{b}_{\perp j}$

$$z = \sqrt{\frac{x}{1-x}} \left| \sum_{j=1}^{n-1} x_j \vec{b}_{\perp j} \right|$$

QCD Phenomenology

• Hadronic QCD transverse density $\tilde{
ho}$ is identified with the string mode density $|\Phi|^2$ in AdS space!

$$\tilde{\rho}(x,\zeta) = \frac{R^3}{2\pi} \frac{x}{1-x} e^{3A(\zeta)} \frac{|\Phi(\zeta)|^2}{\zeta^4}$$

- The variable ζ represents the invariant separation between point-like constituents and it is also the holographic variable: $\zeta = z$.
- For two-partons

$$\tilde{\rho}(x,\zeta) = \frac{1}{(1-x)^2} \left| \widetilde{\psi}(x,\zeta) \right|^2.$$

• Two-parton bound state LFWF

$$\left|\widetilde{\psi}(x,\zeta)\right|^2 = \frac{R^3}{2\pi} x(1-x) e^{3A(\zeta)} \frac{\left|\Phi(\zeta)\right|^2}{\zeta^4}.$$

Brodsky and de Teramond, arXiv:hep-ph/0602252

• Short distance behavior of LFWF: $\widetilde{\psi}(x, \mathbf{b}_{\perp}) \sim (\mathbf{b}_{\perp}^2)^{\Delta - 2}$.

NNPSS July 2006 QCD Phenomenology

• Our final result: hadronic QCD transverse density $\tilde{\rho}$ is determined by the modes Φ in AdS space!

$$\tilde{\rho}(x,\zeta) = \frac{R^3}{2\pi} \frac{x}{1-x} e^{3A(\zeta)} \frac{|\Phi(\zeta)|^2}{\zeta^4}$$

- The variable ζ , $0 \leq \zeta \leq \Lambda_{\text{QCD}}^{-1}$, is related to the average transverse separation between spectator constituents, and it is also the holographic variable z, $\zeta = z$.
- For the two-particle case

$$\tilde{p}(x,\zeta) = \frac{1}{(1-x)^2} |\psi(x,\zeta)|^2,$$

and we recover our previous results

$$|\psi(x,\zeta)|^2 \simeq \frac{R^3}{2\pi} x(1-x) \frac{|\Phi(\zeta)|^2}{\zeta^4} \theta\left(\zeta^2 \le \Lambda_{\text{QCD}}^{-2}\right).$$

QCD Phenomenology

Hadron Distribution Amplitudes

Lepage; SJB Efremov, Radyuskin

$$\phi(x_i, Q) \equiv \prod_{i=1}^{n-1} \int^Q d^2 \vec{k}_{\perp} \psi_n(x_i, \vec{k}_{\perp i})$$

- Fundamental measure of valence wavefunction
- Gauge Invariant (includes Wilson line)
- Evolution Equations, OPE
- Conformal Expansion
- Hadronic Input in Factorization Theorems

AdS/CFT:
$$\phi(x,Q_0) \propto \sqrt{x(1-x)}$$

QCD Phenomenology

Stan Brodsky, SLAC

58

Baryon Form Factors

- Coupling of the extended AdS mode with an external gauge field $A^{\mu}(x,z)$

$$ig_5 \int d^4x \, dz \, \sqrt{g} \, A_\mu(x,z) \, \overline{\Psi}(x,z) \gamma^\mu \Psi(x,z),$$

where

$$\Psi(x,z) = e^{-iP \cdot x} \left[\psi_+(z) u_+(P) + \psi_-(z) u_-(P) \right],$$

$$\psi_+(z) = C z^2 J_1(zM), \qquad \psi_-(z) = C z^2 J_2(zM),$$

and

$$u(P)_{\pm} = \frac{1 \pm \gamma_5}{2} u(P).$$

$$\psi_+(z) \equiv \psi^{\uparrow}(z), \quad \psi_-(z) \equiv \psi^{\downarrow}(z),$$

the LC \pm spin projection along \hat{z} .

NNPSS

July 2006

• Constant C determined by charge normalization:

$$C = \frac{\sqrt{2}\Lambda_{\text{QCD}}}{R^{3/2} \left[-J_0(\beta_{1,1})J_2(\beta_{1,1})\right]^{1/2}}$$

QCD Phenomenology

Consider the spin non-flip form factors in the infinite wall approximation

$$F_{+}(Q^{2}) = g_{+}R^{3} \int \frac{dz}{z^{3}} J(Q,z) |\psi_{+}(z)|^{2},$$

$$F_{-}(Q^{2}) = g_{-}R^{3} \int \frac{dz}{z^{3}} J(Q,z) |\psi_{-}(z)|^{2},$$

where the effective charges g_+ and g_- are determined from the spin-flavor structure of the theory.

- Choose the struck quark to have $s^z = +1/2$. The two AdS solutions $\psi_+(z)$ and $\psi_-(z)$ correspond to nucleons with $J^z = +1/2$ and -1/2.
- For SU(6) spin-flavor symmetry (proton up)

$$N_{u\uparrow}^{\uparrow} = \frac{5}{3}, \ N_{u\downarrow}^{\uparrow} = \frac{1}{3}, \ N_{d\uparrow}^{\uparrow} = \frac{1}{3}, \ N_{d\downarrow}^{\uparrow} = \frac{2}{3}.$$

Final result

$$F_1^p(Q^2) = R^3 \int \frac{dz}{z^3} J(Q, z) |\psi_+(z)|^2,$$

$$F_1^n(Q^2) = -\frac{1}{3} R^3 \int \frac{dz}{z^3} J(Q, z) \left[|\psi_+(z)|^2 - |\psi_-(z)|^2 \right].$$

where $F_1^p(0) = 1$, $F_1^n(0) = 0$. NNPSS

July 2006

QCD Phenomenology

60

Dirac Proton Form Factor

(Valence Approximation)

Prediction for $Q^4 F_1^p(Q^2)$ for $\Lambda_{\text{QCD}} = 0.21$ GeV in the hard wall approximation. Analysis of the data is from Diehl (2005). Red points are from Sill (1993). Superimposed Green points are from Kirk (1973).

NNPSS July 2006

QCD Phenomenology

Dirac Neutron Form Factor

(Valence Approximation)

 $Q^4F_1^n(Q^2)$ [GeV⁴] 0 -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 2 3 1 4 5 6 Q^2 [GeV²]

Prediction for $Q^4 F_1^n(Q^2)$ for $\Lambda_{QCD} = 0.21$ GeV in the hard wall approximation. Data analysis from Diehl (2005).

NNPSS July 2006 QCD Phenomenology

Ads/CFT and QCD

• Meson distribution amplitude $\phi(x, Q_0) \propto \sqrt{x(1-x)}$

- Dominance of constituent interchange mechanism
- Power-law behavior from small impact separation b_{\perp} high transverse momentum k_{\perp} as well as x near 1
- High transverse momentum behavior matches PQCD LFWF with orbital: Belitsky, Ji, Yuan
- Perfect match of LF and AdS/CFT formulae for form factors

63

Applications of Light-Front Wavefunctions

- Exact formulae for form factors, quark and gluon distributions; vanishing anomalous gravitational moment; edm connection to anm
- Deeply Virtual Compton Scattering, generalized parton distributions, angular momentum sum rules
- Exclusive weak decay amplitudes
- Single spin asymmetries
- Factorization theorems, DGLAP, BFKL, ERBL Evolution
- Quark interchange amplitude
- Relation of spin, momentum, and other distributions to physics of the hadron itself.

QCD Phenomenology

Advantages of Light-Front Formalism

- *Hidden Color* Of Nuclear Wavefunction
- Color Transparency, Opaqueness
- Simple proof of Factorization theorems for hard processes (Lepage, sjb)
- Direct mapping to AdS/CFT (de Teramond, sjb)
- New Effective LF Equations (de Teramond, sjb)
- Light-Front Amplitude Generator

65

Light-Front Wavefunctions

Dirac's Front Form: Fixed $\tau = t + z/c$

$$\begin{aligned} & \psi(x, k_{\perp}) \\ & \text{Invariant under boosts. Independent of } P^{\mu} \quad x_i = \frac{k_i^+}{P^+} \\ & H_{LF}^{QCD} |\psi > = M^2 |\psi > \end{aligned}$$

Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

QCD Phenomenology

A Unified Description of Hadron Structure

NNPSS July 2006 QCD Phenomenology

Final State Interactions Produce T-Odd (Sivers Effect)

- Bjorken Scaling!
- Arises from Interference of Final-State Coulomb Phases in S and P waves
- Relate to the quark contribution to the target proton anomalous magnetic moment
- Sum of Sivers Functions for all quarks and gluons vanishes. (Zero gravitoanomalous magnetic moment) $\vec{S} \cdot \vec{p}_{jet} \times \vec{q}$

Hwang, Schmidt. sjb; Burkardt

QCD Phenomenology

- Quarks Reinteract in Final State
- Analogous to Coulomb phases, but not unitary
- Observable effects: DDIS, SSI, shadowing, antishadowing
- Structure functions cannot be computed from LFWFs computed in isolation
- Wilson line not 1 even in lcg

QCD Phenomenology

Prediction for Single-Spin Asymmetry

Hwang, Schmidt. sjb

QCD Phenomenology

Collins; Hwang, Schmidt. sjb

QCD Phenomenology

Key QCD Experiment at GSI

Measure single-spin asymmetry A_N in Drell-Yan reactions

Leading-twist Bjorken-scaling A_N from S, P-wave initial-state gluonic interactions

Predict: $A_N(DY) = -A_N(DIS)$ Opposite in sign!

$$Q^2 = x_1 x_2 s$$

$$Q^2 = 4 \text{ GeV}^2, s = 80 \text{ GeV}^2$$

$$x_1 x_2 = .05, x_F = x_1 - x_2$$

Trento July 5, 2006

$$p\overline{p}_{\uparrow} \to \ell^+ \ell^- X$$

 $\vec{S} \cdot \vec{q} \times \vec{p}$ correlation

Stan Brodsky, SLAC

AdS/CFT, QCD, & GSI

New Perspectives for QCD from AdS/CFT

- LFWFs: Fundamental description of hadrons at amplitude level
- Holographic Model from AdS/CFT : Confinement at large distances and conformal behavior at short distances
- Model for LFWFs, meson and baryon spectra: many applications!
- New basis for diagonalizing Light-Front Hamiltonian
- Physics similar to MIT bag model, but covariant. No problem with support 0 < x < 1.
- Quark Interchange dominant force at short distances

QCD Phenomenology

Blankenbecler, Gunion, sjb

MIT Bag Model predicts dominance of quark interchange:

C. de Tar

Why is quark-interchange dominant over gluon exchange?

Example:
$$M(K^+p \to K^+p) \propto \frac{1}{ut^2}$$

Exchange of common u quark

 $M_{QIM} = \int d^2 k_{\perp} dx \ \psi_C^{\dagger} \psi_D^{\dagger} \Delta \psi_A \psi_B$

Holographic model (Classical level):

Hadrons enter 5th dimension of AdS_5

Quarks travel freely within cavity as long as separation $z < z_0 = \frac{1}{\Lambda_{QCD}}$

LFWFs obey conformal symmetry producing quark counting rules.

QCD Phenomenology

AdS/CFT explains why quark interchange is dominant interaction at high momentum transfer in exclusive reactions

Non-linear Regge behavior

 $\alpha_R(t) \rightarrow -1$

Key QCD Experiment at GSI

$$\overline{p}p \to K^+ K^- \xrightarrow{\overline{p}} ud$$

$$s \leftrightarrow t \ t \leftrightarrow u \ \text{crossing of } K^+ p \to K^+ p \quad ud$$

$$M(\overline{p}p \to K^+ K^-) \propto \frac{1}{ts^2} \xrightarrow{p} ud$$

$$rac{d\sigma}{dt} \propto rac{1}{s^6 t^2}$$

at large t, u

Trento July 5, 2006

AdS/CFT, QCD, & GSI

Test of Quark Interchange Mechanism in QCD

NNPSS July 2006 QCD Phenomenology

Stan Brodsky, SLAC

80

Comparison of Exclusive Reactions at Large t

B. R. Baller, ^(a) G. C. Blazey, ^(b) H. Courant, K. J. Heller, S. Heppelmann, ^(c) M. L. Marshak, E. A. Peterson, M. A. Shupe, and D. S. Wahl^(d) University of Minnesota, Minneapolis, Minnesota 55455

> D. S. Barton, G. Bunce, A. S. Carroll, and Y. I. Makdisi Brookhaven National Laboratory, Upton, New York 11973

> > and

S. Gushue^(e) and J. J. Russell

Southeastern Massachusetts University, North Dartmouth, Massachusetts 02747 (Received 28 October 1987; revised manuscript received 3 February 1988)

Cross sections or upper limits are reported for twelve meson-baryon and two baryon-baryon reactions for an incident momentum of 9.9 GeV/c, near 90° c.m.: $\pi^{\pm}p \rightarrow p\pi^{\pm}, p\rho^{\pm}, \pi^{+}\Delta^{\pm}, K^{+}\Sigma^{\pm}, (\Lambda^{0}/\Sigma^{0})K^{0};$ $K^{\pm}p \rightarrow pK^{\pm}; p^{\pm}p \rightarrow pp^{\pm}$. By studying the flavor dependence of the different reactions, we have been able to isolate the quark-interchange mechanism as dominant over gluon exchange and quark-antiquark annihilation.

B.R. Baller *et al.*. 1988. Published in Phys.Rev.Lett.60:1118 -1121,1988

Quark Interchange: Dominant Dynamics at large t, u

Relative Rates Correct

The cross section and upper limits (90% confidence level) measured by this experiment are indicated by the filled circles and arrowheads. Values from this experiment and from previous measurements represent an average over the angular region of $-0.05 < \cos\theta_{c.m.} < 0.10$. The other measurements were obtained from the following references: π^+p and K^+p elastic, Ref. 5; $\pi^-p \rightarrow p\pi^-$, Ref. 6; $pp \rightarrow pp$, Ref. 7: Allaby, open circle; Akerlof, cross. Values for the cross sections [(Reaction), cross section in nb/(GeV/c)²] are as follows: (1), 4.6 ± 0.3 ; (2), 1.7 ± 0.2 ; (3), 3.4 ± 1.4 ; (4), 0.9 ± 8.7 ; (5), 3.4 ± 0.7 ; (6), 1.3 ± 0.6 ; (7), 2.0 ± 0.6 ; (8), < 0.12; (9), < 0.1; (10), < 0.06; (11), < 0.05; (12), < 0.15; (13), 48 ± 5 ; (14), < 2.1.

Formula for quark interchange using LFWFs

Blankenbecler, Gunion, sjb; Sivers

$$\begin{split} M_{FI} &= \langle \psi_F | E - K | \psi_I \rangle \\ &\equiv \langle \psi_F | \Delta | \psi_I \rangle \\ &= \frac{1}{2(2\pi)^3} \int d^2k \int_0^1 \frac{dx}{x^2(1-x)^2} \, \Delta \psi_C(\vec{\mathbf{k}}_\perp - x\vec{\mathbf{r}}_\perp, x) \psi_D(\vec{\mathbf{k}}_\perp + (1-x)\vec{\mathbf{q}}_\perp, x) \psi_A(\vec{\mathbf{k}}_\perp - x\vec{\mathbf{r}}_\perp + (1-x)\vec{\mathbf{q}}_\perp, x) \psi_B(\vec{\mathbf{k}}_\perp, x) \,, \end{split}$$

here

$$\begin{split} \Delta &= s - M_A{}^2 - M_B{}^2 - K_a - K_b - K_c - K_d \\ &= M_A{}^2 + M_B{}^2 - S_A(\vec{k}_\perp + (1 - x)\vec{q}_\perp - x\vec{r}_\perp, x) - S_B(\vec{k}_\perp, x) \\ &= M_C{}^2 + M_D{}^2 - S_C(\vec{k}_\perp - x\vec{r}_\perp, x) - S_D(\vec{k}_\perp + (1 - x)\vec{q}_\perp, x) \;. \end{split}$$

NNPSS July 2006 QCD Phenomenology

Stan Brodsky, SLAC

(

(4

83

 $(pp - pp) = C \frac{F_{p}^{2}(t)F_{p}^{2}(u)}{t^{2}}$ $\frac{d\sigma}{dt}$

$$\frac{d\sigma}{dt} = \frac{1}{s^{10}} f(\theta_{\text{c.m.}}), \quad f(\theta_{\text{c.m.}}) \sim \left(\frac{1}{1 - \cos^2\theta}\right)^4$$

N N Force al. Short Distances

The biggest failure of the interchange mechanism is in the spin correlation. For all angles we predict from Table I

$$A_{nn} = \frac{1}{3} \frac{1 - (\frac{3}{31})^2 \chi^2}{1 + \frac{1}{3} (\frac{3}{31})^2 \chi^2} , \qquad (3.11)$$

where

$$\chi = \frac{f(\theta) - f(\pi - \theta)}{f(\theta) + f(\pi - \theta)}.$$

Thus A_{nn} is predicted to be within 2% of $\frac{1}{3}$ even when $\chi = 1$ [$\chi = 0$ for the form in Eq. (3.6)]. The data clearly indicate that A_{nn} is not a constant near $\frac{1}{3}$.

Our expectation, then, is that there is an additional amplitude which strongly interferes with the quark-interchange contributions at Argonne energies; most plausibly, the quark-interchange contribution is dominant at asymptotic t and u, and the interfering amplitude is most important at low tand u. As we shall discuss below, the behavior of A_{11} and A_{ss} in the interference region can play an important role in sorting out the possible subasymptotic contributions.

These results for the quark-interchange model have also been obtained by Farrar, Gottlieb, Sivers, and Thomas,¹² who also consider the possibility that nonperturbative effects (quark-quark scattering via instantons) can explain the data.

QCD Phenomenology

New Perspectives on QCD Phenomena from AdS/CFT

- AdS/CFT: Duality between string theory in Anti-de Sitter Space and Conformal Field Theory
- New Way to Implement Conformal Symmetry
- Holographic Model: Conformal Symmetry at Short Distances, Confinement at large distances
- Remarkable predictions for hadronic spectra, wavefunctions, interactions
- AdS/CFT provides novel insights into the quark structure of hadrons

Outlook

- Only one scale Λ_{QCD} determines hadronic spectrum (slightly different for mesons and baryons).
- Ratio of Nucleon to Delta trajectories determined by zeroes of Bessel functions.
- String modes dual to baryons extrapolate to three fermion fields at zero separation in the AdS boundary.
- Only dimension $3, \frac{9}{2}$ and 4 states $\overline{q}q$, qqq, and gg appear in the duality at the classical level!
- Non-zero orbital angular momentum and higher Fock-states require introduction of quantum fluctuations.
- Simple description of space and time-like structure of hadronic form factors.
- Dominance of quark-interchange in hard exclusive processes emerges naturally from the classical duality of the holographic model. Modified by gluonic quantum fluctuations.
- Covariant version of the bag model with confinement and conformal symmetry.

QCD Phenomenology

Features of Holographic Model

- Use of holographic light-front wave functions to compute hadronic matrix elements and other observables.
- Dominance of quark-interchange in hard exclusive processes emerges naturally from the classical duality of the holographic model, modified by gluonic quantum fluctuations.
- Covariant version of the bag model with confinement and conformal symmetry.
- Precise mapping of string modes to partonic states. String modes inside AdS represent the probability amplitude for the distribution of quarks at a given scale.
- Exact holographic mapping for *n*-parton state determines effective QCD transverse charge density in terms of modes in AdS space.
- Holographic mapping allows deconstruction: express the eigenvalue problem in terms of 3+1 QCD degrees of freedom.

QCD Phenomenology

Use the AdS/CFT orthonormal LFWFs as a basis to diagonalize the QCD LF Hamiltonian

- Good initial approximant
- Better than plane wave basis
- DLCQ discretization
- Use independent HO LFWFs, remove CM motion
- Similar to Shell Model calculations

Vary, Harinandrath, sjb

QCD Phenomenology

Light-Front QCD Heisenberg Equation

 $H_{LC}^{QCD} |\Psi_h\rangle = \mathcal{M}_h^2 |\Psi_h\rangle$

	n Sector	1 qq	2 gg	3 qq g	4 qq qq	5 gg g	6 qq gg	7 qq qq g	8 qq qq qq	88 88 8	10 qq 99 9	11 qq qq gg	12 qq qq qq g	13 qqqqqqq
ζ ^{k,λ}	1 qq			-		•		•	•	•	•	•	•	•
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 gg		X	~~<	•	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		•	•		•	•	•	•
p,s' p,s	3 qq g	>-	>		~~<		~~~{~_	Y.	•	•	Ŧ	•	•	•
(a)	4 q <b>q</b> q <b>q</b>	×	•	>		•		-<	1 A	•	•		•	•
¯p,s' k,λ	5 gg g	•	<u>}</u>		•	X	~	•	•	~~~<		•	•	•
wit	6 qq gg		<b>,</b>	~~~~		>		~~<	•		-<	The second secon	•	•
k,λ p,s	7 qq qq g	•	•	<b>***</b>	>	•	>		~~<	•		-<	H-V	•
(-)	8 qq qq qq	•	•	•	X	•	•	$\succ$	+	•	•		-	X
¯p,s′	9 gg gg	•		•	•	<u>}</u>		•	•	X	~~<	•	•	•
NNN V	10 qq gg g	•	•		•		>-		•	>		~~<	•	•
	11 qq qq gg	•	•	•		•	K	>-		•	>		~~<	•
(c)	12 qq qq qq qq	•	•	•	•	•	•	K+1	>-	•	•	>		$\sim$
L	13 qq qq qq qq	ā •	•	•	•	•	•	•		•	•	•	>	

Use AdS/QCD basis functions



QCD Phenomenology

Pauli, Pinsky, sjb Stan Brodsky, SLAC Use AdS/QCD Basis functions to diagonalize the LF Hamiltonian

"...I will sum up by saying that light-front QCD is not for the faint of heart, but for a few good candidates it is a chance to be a leader in a much smaller community of researchers than one faces in the other areas of high-energy physics, with, I believe, unusual promise for interesting and unexpected results."

K.G. Wilson, "The Origins of Lattice Gauge Theory," Nuclear Physics B, Suppl., **140** (2005) p3



QCD Phenomenology

## Conformal symmetry: Template for QCD

- Initial approximation to PQCD; then correct for non-zero beta function and quark masses
- Commensurate scale relations: relate observables at corresponding scales: Generalized Crewther Relation
- Arguments for Infrared fixed-point for  $\alpha_s$

Alhofer, et al.

- Effective Charges: analytic at quark mass thresholds, finite at small momenta
- Eigensolutions of Evolution Equation of distribution amplitudes



QCD Phenomenology

## New Perspectives on QCD from AdS/CFT

- LFWFs: Fundamental description of hadrons at amplitude level
- QCD is Nearly Conformal
- Holographic Model from AdS/CFT : Confinement at large distances and conformal behavior at short distances
- Model for LFWFs, meson and baryon spectra
- Quark-interchange dominates scattering amplitudes



QCD Phenomenology

#### AdS/CFT and QCD

Bottom-Up Approach

- Nonperturbative derivation of dimensional counting rules of hard exclusive glueball scattering for gauge theories with mass gap dual to string theories in warped space: Polchinski and Strassler, hep-th/0109174.
- Deep inelastic structure functions at small *x*: Polchinski and Strassler, hep-th/0209211.
- Derivation of power falloff of hadronic light-front Fock wave functions, including orbital angular momentum, matching short distance behavior with string modes at AdS boundary:
   Brodsky and de Téramond, hep-th/0310227. E. van Beveren et al.
- Low lying hadron spectra, chiral symmetry breaking and hadron couplings in AdS/QCD: Boschi-Filho and Braga, hep-th/0212207; de Téramond and Brodsky, hep-th/0501022; Erlich, Katz, Son and Stephanov, hep-ph/0501128; Hong, Yong and Strassler, hep-th/0501197; Da Rold and Pomarol, hep-ph/0501218; Hirn and Sanz, hep-ph/0507049; Boschi-Filho, Braga and Carrion, arXiv:hepth/0507063; Katz, Lewandowski and Schwartz, arXiv:hep-ph/0510388.



QCD Phenomenology

#### • Gluonium spectrum (top-bottom):

Csaki, Ooguri, Oz and Terning, hep-th/9806021; de Mello Kock, Jevicki, Mihailescu and Nuñez, hep-th/9806125; Csaki, Oz, Russo and Terning, hep-th/9810186; Minahan, hep-th/9811156; Brower, Mathur and Tan, hep-th/0003115, Caceres and Nuñez, hep-th/0506051.

#### • D3/D7 branes (top-bottom):

Karch and Katz, hep-th/0205236; Karch, Katz and Weiner, hep-th/0211107; Kruczenski, Mateos, Myers and Winters, hep-th/0311270; Sakai and Sonnenschein, hep-th/0305049; Babington, Erdmenger, Evans, Guralnik and Kirsch, hep-th/0312263; Nuñez, Paredes and Ramallo, hep-th/0311201; Hong, Yoon and Strassler, hep-th/0312071; hep-th/0409118; Kruczenski, Pando Zayas, Sonnenschein and Vaman, hep-th/0410035; Sakai and Sugimoto, hep-th/0412141; Paredes and Talavera, hep-th/0412260; Kirsh and Vaman, hep-th/0505164; Apreda, Erdmenger and Evans, hep-th/0509219; Casero, Paredes and Sonnenschein, hep-th/0510110.

• Other aspects of high energy scattering in warped spaces:

Giddings, hep-th/0203004; Andreev and Siegel, hep-th/0410131; Siopsis, hep-th/0503245.

• Strongly coupled quark-gluon plasma ( $\eta/s = 1/4\pi$ ):

Policastro, Son and Starinets, hep-th/0104066; Kang and Nastase, hep-th/0410173 ...



QCD Phenomenology

## A Theory of Everything Takes Place

String theorists have broken an impasse and may be on their way to converting this mathematical structure -- physicists' best hope for unifying gravity and quantum theory -- into a single coherent theory.

### Frank and Ernest



Copyright (c) 1994 by Thaves. Distributed from www.thecomics.com.

NNPSS July 2006 QCD Phenomenology