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QCD Lagrangian
Generalization of QED

Yang Mills Gauge Principle: 
Color Rotation and Phase 

Invariance at Every Point of 
Space and Time 

Scale-Invariant Coupling
Renormalizable 

Nearly-Conformal
Asymptotic Freedom
Color Confinement
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Wavefunctions: Fundamental  
description of composite systems

• Basic quantum mechanical quantities in atomic and 
nuclear physics

• Physics at the amplitude level

• Schrödinger wavefunction in nonrelativistic theory

• Relativistic formulation: Bethe Salpeter amplitudes 
evaluated at fixed time t

• Problem:  “Instant” form: Frame-dependent 
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Dirac’s Amazing  Idea:
The “Front Form”

Fig. 1. Dirac’s three forms of Hamiltonian dynamics.

2.4. Forms of Hamiltonian dynamics

Obviously, one has many possibilities to parametrize space—time by introducing some general-
ized coordinates xJ (x). But one should exclude all those which are accessible by a Lorentz
transformation. Those are included anyway in a covariant formalism. This limits considerably the
freedom and excludes, for example, almost all rotation angles. Following Dirac [123] there are no
more than three basically different parametrizations. They are illustrated in Fig. 1, and cannot be
mapped on each other by a Lorentz transform. They differ by the hypersphere on which the fields
are initialized, and correspondingly one has different “times”. Each of these space—time parametriz-
ations has thus its own Hamiltonian, and correspondingly Dirac [123] speaks of the three forms of
Hamiltonian dynamics: The instant form is the familiar one, with its hypersphere given by t"0. In
the front form the hypersphere is a tangent plane to the light cone. In the point form the time-like
coordinate is identified with the eigentime of a physical system and the hypersphere has a shape of
a hyperboloid.

Which of the three forms should be prefered? The question is difficult to answer, in fact it is
ill-posed. In principle, all three forms should yield the same physical results, since physics should
not depend on how one parametrizes the space (and the time). If it depends on it, one has made
a mistake. But usually one adjusts parametrization to the nature of the physical problem to
simplify the amount of practical work. Since one knows so little on the typical solutions of a field
theory, it might well be worth the effort to admit also other than the conventional “instant” form.

The bulk of research on field theory implicitly uses the instant form, which we do not even
attempt to summarize. Although it is the conventional choice for quantizing field theory, it has

S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486 315

Instant Form Front Form 

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

σ = ct− z

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

σ = ct− z

Evolve in 
light-cone time!
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General remarks about orbital angular mo-
mentum

!R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

∑n
i=1(xi

!P⊥+ !k⊥i) = !P⊥

xi
!P⊥+ !k⊥i

∑n
i

!k⊥i = !0⊥

∑n
i xi = 1

General remarks about orbital angular mo-
mentum

Ψn(xi,!k⊥i, λi)

∑n
i=1(xi

!R⊥+!b⊥i) = !R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

P+, !P+

xiP
+, xi

!P⊥+ !k⊥i

ẑ

!L = !R× !P

!Li = (xi
!R⊥+!b⊥i)× !P

!"i = !b⊥i × !k⊥i

!"i = !Li − xi
!R⊥ × !P = !b⊥i × !P

A(σ,∆⊥) = 1
2π

∫
dζe

i
2σζM(ζ,∆⊥)

P+, $P⊥

xiP
+, xi

$P⊥+ $k⊥i

ζ = Q2

2p·q

ẑ

$L = $R× $P

$Li = (xi
$R⊥+$b⊥i)× $P

Light-Front Wavefunctions
P+ = P0 + Pz

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

ū

E′ = E − ν, &q

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

Invariant under boosts!  Independent of Pµ 
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ψ(x,k⊥)
HQCD
LF |ψ>=M2|ψ>

Dirac’s Front Form: Fixed τ= t+ z/c

Light-Front Wavefunctions

xi =
k+
i

P+

0 < xi < 1

n∑
i=1

xi = 1

Remarkable new insights from AdS/CFT, the duality between    
conformal field theory and  Anti-de Sitter Space 

Invariant under boosts.   Independent of Pµ
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|p,Sz>=∑
n=3

ψn(xi, !k⊥i,λi)|n;k⊥i,λi>|p,Sz>=∑
n=3

Ψn(xi,!k⊥i,λi)|n;!k⊥i,λi>

|p,Sz>=∑
n=3

Ψn(xi,!k⊥i,λi)|n;!k⊥i,λi>

The Light Front Fock State Wavefunctions

Ψn(xi,!k⊥i,λi)

are boost invariant; they are independent of the hadron’s energy
and momentum Pµ.
The light-cone momentum fraction

xi =
k+
i
p+ =

k0i + kzi
P0+Pz

are boost invariant.
n

∑
i
k+
i = P+,

n

∑
i
xi = 1,

n

∑
i

!k⊥i =!0⊥.

10

sum over states with n=3, 4, ...constituents

Fixed LF time
Intrinsic glue, sea quarks, charm, bottom
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|uud >, |uudg>, |uudss̄>, |uudcc̄>, |uudbb̄> · · ·

s(x) != s̄(x)

• Proton Fock States

• Strange and Anti-Strange Quarks not Symmetric

• “Intrinsic Charm”: High momentum heavy quarks

• “Hidden Color”: Deuteron  not  always  p +  n

• Orbital Angular Momentum Fluctuations - 
Anomalous Magnetic Moment

Hadrons Fluctuate in Particle 
Number
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Light-Front Quantization of Gauge Theory

Identify independent and constrained fields

Choose light-front gauge A+ = 0

Ψ± ≡ Λ±Ψ = 1
2(1± αz)Ψ

Ψ+ dynamical

constraint: Ψ− = 1
2i∂+(mβ − $α⊥ · Ta $Da⊥)Ψ+

constraint: A−a = g
(i∂+)2

J+
a

1
i∂+ → 1

k+

dynamical: $A⊥

Choose light-front gauge A+ = 0

Ψ± ≡ Λ±Ψ = 1
2(1± αz)Ψ

Ψ+ dynamical

constraint: Ψ− = 1
2i∂+(mβ − $α⊥ · Ta $Da⊥)Ψ+

constraint: A−a = g
(i∂+)2

J+
a

1
i∂+ → 1

k+

dynamical: $A⊥

Choose light-front gauge A+ = 0

Ψ± ≡ Λ±Ψ = 1
2(1± αz)Ψ

Ψ+ dynamical

constraint: Ψ− = 1
2i∂+(mβ − $α⊥ · Ta $Da⊥)Ψ+

constraint: A−a = g
(i∂+)2

J+
a

1
i∂+ → 1

k+

dynamical: $A⊥

Choose light-front gauge A+ = 0

Ψ± ≡ Λ±Ψ = 1
2(1± αz)Ψ

Ψ+ dynamical

constraint: Ψ− = 1
2i∂+(mβ − $α⊥ · Ta $Da⊥)Ψ+

constraint: A−a = g
(i∂+)2

J+
a

1
i∂+ → 1

k+

dynamical: $A⊥

Choose light-front gauge A+ = 0

Ψ± ≡ Λ±Ψ = 1
2(1± αz)Ψ

Ψ+ dynamical

constraint: Ψ− = 1
2i∂+(mβ − $α⊥ · Ta $Da⊥)Ψ+

constraint: A−a = g
(i∂+)2

J+
a

1
i∂+ → 1

k+

dynamical: $A⊥

Choose light-front gauge A+ = 0

Ψ± ≡ Λ±Ψ = 1
2(1± αz)Ψ

Ψ+ dynamical

constraint: Ψ− = 1
2i∂+(mβ − $α⊥ · Ta $Da⊥)Ψ+

constraint: A−a = g
(i∂+)2

J+
a

1
i∂+ → 1

k+

dynamical: $A⊥

Choose light-front gauge A+ = 0

Ψ± ≡ Λ±Ψ = 1
2(1± αz)Ψ

Ψ+ dynamical

constraint: Ψ− = 1
2i∂+(mβ − $α⊥ · Ta $Da⊥)Ψ+

constraint: A−a = g
(i∂+)2

J+
a

1
i∂+ → 1

k+

dynamical: $A⊥
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LQCD → HLF
QCD

canonical quantization A+ = 0

Interactions

uγµu

uγνγ+γµu
k+

uγ+u uγ+u

k+2

LQCD → HLF
QCD

canonical quantization A+ = 0

Interactions

uγµu

uγνγ+γµu
k+

uγ+u uγ+u

k+2

Canonical quantization in  
light-front gauge

QCD Interactions

LQCD → HLF
QCD

canonical quantization A+ = 0

Interactions

uγµu

uγνγ+γµu
k+

uγ+u uγ+u

k+2

LQCD → HLF
QCD

canonical quantization A+ = 0

Interactions

uγµu

uγνγ+γµu
k+

uγ+u uγ+u

k+2

LQCD → HLF
QCD

canonical quantization A+ = 0

Interactions

uγµu

uγνγ+γµu
k+

uγ+u uγ+u

k+2

LQCD → HLF
QCD

canonical quantization A+ = 0

Interactions

uγµu

uγνγ+γµu
k+

uγ+u uγ+u

k+2

γ± = γ+ ± γz

spinore eigenstates og Λ± = γ0γ±
2

γ± = γ+ ± γz

spinors are eigenstates of Λ± = γ0γ±
2
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In terms of the hadron four-momentum P =
(P+, P−, !P⊥) with P± = P0 ± P3, the light-
front frame independent Hamiltonian for a
hadronic composite system HQCD

LC = PµPµ =
P−P+− !P2⊥, has eigenvalues given in terms of
the eigenmass M squared corresponding to
the mass spectrum of the color-singlet states
in QCD,

HQCD
LC |Ψh〉 =M2

h |Ψh〉

15

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN "" 1

!n
$

%$

!
$!"

b!
$"

(k
&
, #

&
)d!

$"M
(k

&N
, #

&N
)!0" , (3.29)

!q$, qN $"" 1

!n
$

%$
!
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b!
$"

(k$
&
, #$

&
)d!

$"M
(k$

&N
, #$

&N
)!0" , (3.30)
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Fig. 2. The Hamiltonian matrix for a SU(N)-meson. The matrix elements are represented by energy diagrams. Within
each block they are all of the same type: either vertex, fork or seagull diagrams. Zero matrices are denoted by a dot ( ) ).
The single gluon is absent since it cannot be color neutral.

mass or momentum scale Q. The corresponding wavefunction will be indicated by corresponding
upper scripts,

!!""
!#"

(x
#
, k

!
, !

#
) or !!$"

!#"
(x

#
, k

!
, !

#
) . (3.15)

Consider a pion in QCD with momentum P"(P%, P
!
) as an example. It is described by

"# : P$" $
!
!%&
!d[%

!
]"n : x

#
P%, k

!#
#x

#
P
!
, !

#
$!

!#!(x#
, k

!#
, !

#
) , (3.16)

where the sum is over all Fock space sectors of Eq. (3.7). The ability to specify wavefunctions
simultaneously in any frame is a special feature of light-cone quantization. The light-cone
wavefunctions !

!#! do not depend on the total momentum, since x
#
is the longitudinal momentum

fraction carried by the i"# parton and k
!#

is its momentum “transverse” to the direction of the
meson; both of these are frame-independent quantities. They are the probability amplitudes to find
a Fock state of bare particles in the physical pion.

More generally, consider a meson in SU(N). The kernel of the integral equation (3.14) is
illustrated in Fig. 2 in terms of the block matrix &n : x

#
, k

!#
, !

#
"H"n' : x'

#
, k'

!#
, !'

#
$. The structure of this

matrix depends of course on the way one has arranged the Fock space, see Eq. (3.7). Note that most
of the block matrix elements vanish due to the nature of the light-cone interaction as defined in
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Heisenberg Equation
Light-Front QCD

Pauli, Pinsky, sjb

DLCQ
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• Discretized Light-Cone Quantization (DLCQ)

• Many 1+1 model field theories completely solved using 
DLCQ Hornbostel, Pauli, sjb;  Klebanov

• UV Regularization: 3+ 1 Pauli Villars          Hiller, McCartor, sjb

• Transverse Lattice        Bardeen, Peterson,Rabinovici, Burkardt, Dalley

• Bethe-Salpeter/Dyson-Schwinger at fixed LF time

• Angular Structure of Solutions known    Karmanov, Hwang, sjb 

• Use AdS/CFT model solutions as starting point! Vary, sjb

Solving the LF Heisenberg Equation

Minkowski space !
Pauli, 

sjb
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Discrete Light-Front Quantization

program for solving quantum field theories

Diagonalize HQCD
LF

HLF |Ψ >= M2|Ψ >

< n|HLF |m >< m|Ψ >= M2 < n|Ψ >

|n >: eigenstates of H0
LF

Periodic, antiperiodic boundary conditions

k+
i = 2π

L ni

P+ = 2π
L K

Diagonalize HQCD
LF

HLF |Ψ >= M2|Ψ >

< n|HLF |m >< m|Ψ >= M2 < n|Ψ >

|n >: eigenstates of H0
LF

Periodic, antiperiodic boundary conditions

k+
i = 2π

L ni

P+ = 2π
L K

Diagonalize HQCD
LF

HLF |Ψ >= M2|Ψ >

< n|HLF |m >< m|Ψ >= M2 < n|Ψ >

|n >: eigenstates of H0
LF

Periodic, antiperiodic boundary conditions

k+
i = 2π

L ni

P+ = 2π
L K

Diagonalize HQCD
LF

HLF |Ψ >= M2|Ψ >

< n|HLF |m >< m|Ψ >= M2 < n|Ψ >

|n >: eigenstates of H0
LF

Periodic, antiperiodic boundary conditions

k+
i = 2π

L ni

P+ = 2π
L K

Diagonalize HQCD
LF

HLF |Ψ >= M2|Ψ >

< n|HLF |m >< m|Ψ >= M2 < n|Ψ >

|n >: eigenstates of H0
LF

Periodic, antiperiodic boundary conditions

k+
i = 2π

L ni

P+ = 2π
L K

Diagonalize HQCD
LF

HLF |Ψ >= M2|Ψ >

< n|HLF |m >< m|Ψ >= M2 < n|Ψ >

|n >: eigenstates of H0
LF

Periodic, antiperiodic boundary conditions

k+
i = 2π

L ni

P+ = 2π
L K

∑
ni = K

ni > 0

Choose light-front gauge A+ = 0

Ψ± ≡ Λ±Ψ = 1
2(1± αz)Ψ

Ψ+ dynamical

constraint: Ψ− = 1
2i∂+(mβ − $α⊥ · Ta $Da⊥)Ψ+

constraint: A−a = g
(i∂+)2

J+
a

∑
ni = K

ni > 0

Choose light-front gauge A+ = 0

Ψ± ≡ Λ±Ψ = 1
2(1± αz)Ψ

Ψ+ dynamical

constraint: Ψ− = 1
2i∂+(mβ − $α⊥ · Ta $Da⊥)Ψ+

constraint: A−a = g
(i∂+)2

J+
a

Periodic or antiperiodic boundary conditions

Pauli, sjb
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Hornbostel, Pauli, sjb
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Advantages of Light-Front 
Quantization 

• Frame independent;  Jz kinematical

• Minkowski space; no fermion doubling

• Physical degrees of freedom; physical polarization

• Trivial vacuum; zero modes

• B(0) =0; Exact formula for current matrix elements

• DLCQ; covariant truncation of Fock space

• LFWFs, spectra, physics at the amplitude level, phases
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For leptons, such as the electron or neutrino, it is convenient to employ the electron
mass for M , so that the magnetic moment is given in Bohr magnetons.

Now we turn to the evaluation of the helicity-conserving and helicity-flip vector-
current matrix elements in the light-front formalism. In the interaction picture, the
current Jµ(0) is represented as a bilinear product of free fields, so that it has an
elementary coupling to the constituent fields [13, 14, 15]. The Dirac form factor can
then be calculated from the expression

F1(q
2) =

∑
a

∫
[dx][d2k⊥]

∑
j

ej

[
ψ↑∗

a (xi,k
′
⊥i, λi) ψ↑

a(xi,k⊥i, λi)
]
, (10)

whereas the Pauli and electric dipole form factors are given by

F2(q2)

2M
=

∑
a

∫
[dx][d2k⊥]

∑
j

ej
1

2
× (11)

[
− 1

qL
ψ↑∗

a (xi,k
′
⊥i, λi) ψ↓

a(xi,k⊥i, λi) +
1

qR
ψ↓∗

a (xi,k
′
⊥i, λi) ψ↑

a(xi,k⊥i, λi)
]

,

F3(q2)

2M
=

∑
a

∫
[dx][d2k⊥]

∑
j

ej
i

2
× (12)

[
− 1

qL
ψ↑∗

a (xi,k
′
⊥i, λi) ψ↓

a(xi,k⊥i, λi)− 1

qR
ψ↓∗

a (xi,k
′
⊥i, λi) ψ↑

a(xi,k⊥i, λi)
]

.

The summations are over all contributing Fock states a and struck constituent charges
ej. Here, as earlier, we refrain from including the constituents’ color and flavor
dependence in the arguments of the light-front wave functions. The phase-space
integration is

∫
[dx] [d2k⊥] ≡ ∑

λi,ci,fi

[
n∏

i=1

(∫ ∫ dxi d2k⊥i

2(2π)3

)]
16π3δ

(
1−

n∑
i=1

xi

)
δ(2)

(
n∑

i=1

k⊥i

)
, (13)

where n denotes the number of constituents in Fock state a and we sum over the
possible {λi}, {ci}, and {fi} in state a. The arguments of the final-state, light-front
wave function differentiate between the struck and spectator constituents; namely, we
have [13, 15]

k′
⊥j = k⊥j + (1− xj)q⊥ (14)

for the struck constituent j and

k′
⊥i = k⊥i − xiq⊥ (15)

for each spectator i, where i $= j. Note that because of the frame choice q+ = 0, only
diagonal (n′ = n) overlaps of the light-front Fock states appear [14].
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Drell, sjb
A(σ,∆⊥) = 1

2π
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dζe
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P+, $P⊥

xiP
+, xi

$P⊥+ $k⊥i

ζ = Q2

2p·q

x̂, ŷ plane

M2(L) ∝ L

Must have ∆%z = ±1 to have nonzero F2(q2)

-
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〈
P + q,↑ ∣∣J+(0)

2P+
∣∣P,↑ 〉 = F1(q

2), (5)

〈
P + q,↑ ∣∣J+(0)

2P+
∣∣P,↓ 〉 = −(q1 − iq2)F2(q

2)

2M
. (6)

The magnetic moment of a composite system is one of its most basic properties. The

magnetic moment is defined at the q2 → 0 limit,

µ = e

2M

[
F1(0) + F2(0)

]
, (7)

where e is the charge and M is the mass of the composite system. We use the standard

light-cone frame (q± = q0 ± q3):

q = (
q+, q−, %q⊥

) =
(
0,

−q2

P+ , %q⊥
)

,

P = (
P+,P−, %P⊥

) =
(

P+,
M2

P+ , %0⊥
)

, (8)

where q2 = −2P · q = −%q2⊥ is 4-momentum square transferred by the photon.
The Pauli form factor and the anomalous magnetic moment κ = e

2M F2(0) can then be

calculated from the expression

−(q1 − iq2)F2(q
2)

2M
= ∑

a

∫
d2%k⊥ dx
16π3

∑
j

ej ψ↑∗
a

(
xi, %k′⊥i ,λi

)
ψ↓

a

(
xi, %k⊥i ,λi

)
, (9)

where the summation is over all contributing Fock states a and struck constituent charges

ej . The arguments of the final-state light-cone wavefunction are [1,2]

%k′⊥i = %k⊥i + (1− xi)%q⊥ (10)

for the struck constituent and

%k′⊥i = %k⊥i − xi %q⊥ (11)

for each spectator. Notice that the magnetic moment must be calculated from the spin-

flip non-forward matrix element of the current. It is not given by a diagonal forward matrix

element [21]. In the ultra-relativistic limit where the radius of the system is small compared

to its Compton scale 1/M , the anomalous magnetic moment must vanish [22]. The light-

cone formalism is consistent with this theorem.

The form factors of the energy–momentum tensor for a spin- 1
2
composite are defined by

〈P ′|T µν(0)|P 〉 = ū(P ′)
[
A(q2)γ (µ +P ν) + B(q2)

i

2M
+P (µσν)αqα

+ C(q2)
1

M
(qµqν − gµνq2)

]
u(P ), (12)

where qµ = (P ′ − P)µ, +Pµ = 1
2
(P ′ + P)µ , a(µbν) = 1

2
(aµbν + aνbµ), and u(P ) is the

spinor of the system.

As in the light-cone decomposition Eqs. (5) and (6) of the Dirac and Pauli form factors

for the vector current [8], we can obtain the light-cone representation of the A(q2) and
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ej . The arguments of the final-state light-cone wavefunction are [1,2]

%k′⊥i = %k⊥i + (1− xi)%q⊥ (10)

for the struck constituent and

%k′⊥i = %k⊥i − xi %q⊥ (11)

for each spectator. Notice that the magnetic moment must be calculated from the spin-

flip non-forward matrix element of the current. It is not given by a diagonal forward matrix

element [21]. In the ultra-relativistic limit where the radius of the system is small compared

to its Compton scale 1/M , the anomalous magnetic moment must vanish [22]. The light-

cone formalism is consistent with this theorem.

The form factors of the energy–momentum tensor for a spin- 1
2
composite are defined by

〈P ′|T µν(0)|P 〉 = ū(P ′)
[
A(q2)γ (µ +P ν) + B(q2)

i

2M
+P (µσν)αqα

+ C(q2)
1

M
(qµqν − gµνq2)

]
u(P ), (12)

where qµ = (P ′ − P)µ, +Pµ = 1
2
(P ′ + P)µ , a(µbν) = 1

2
(aµbν + aνbµ), and u(P ) is the

spinor of the system.

As in the light-cone decomposition Eqs. (5) and (6) of the Dirac and Pauli form factors

for the vector current [8], we can obtain the light-cone representation of the A(q2) and
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B(q2) form factors of the energy-tensor equation (12). Since we work in the interaction

picture, only the non-interacting parts of the energy–momentum tensor T ++(0) need to be

computed in the light-cone formalism. By calculating the ++ component of Eq. (12), we

find 〈
P + q,↑ ∣∣T ++(0)

2(P+)2

∣∣P,↑〉 = A(q2), (13)

〈
P + q,↑ ∣∣T ++(0)

2(P+)2

∣∣P,↓〉 = −(q1 − iq2)B(q2)

2M
. (14)

The A(q2) and B(q2) form factors Eqs. (13) and (14) are similar to the F1(q
2) and F2(q

2)

form factors Eqs. (5) and (6) with an additional factor of the light-conemomentum fraction

x = k+/P+ of the struck constituent in the integrand. The B(q2) form factor is obtained

from the non-forward spin-flip amplitude. The value of B(0) is obtained in the q2 → 0

limit. The angular momentum projection of a state is given by

〈J i〉 = 1

2
εijk

∫
d3x

〈
T 0kxj − T 0j xk

〉
= A(0)〈Li〉 + [

A(0) + B(0)
]
ū(P )

1

2
σ iu(P ). (15)

This result is derived using a wave packet description of the state. The 〈Li〉 term is the

orbital angular momentum of the center of mass motion with respect to an arbitrary origin

and can be dropped. The coefficient of the 〈Li〉 termmust be 1;A(0) = 1 also follows when

we evaluate the four-momentum expectation value 〈Pµ〉. Thus the total intrinsic angular
momentum J z of a nucleon can be identified with the values of the form factors A(q2) and

B(q2) at q2 = 0:

〈J z〉 =
〈
1

2
σ z

〉[
A(0) + B(0)

]
. (16)

One can define individual quark and gluon contributions to the total angular momentum

from the matrix elements of the energy–momentum tensor [9]. However, this definition is

only formal;Aq,g(0) can be interpreted as the light-conemomentum fraction carried by the

quarks or gluons 〈xq,g〉. The contributions from Bq,g(0) to Jz cancel in the sum. In fact,

we shall show that the contributions to B(0) vanish when summed over the constituents of

each individual Fock state.

We will give an explicit realization of these relations in the light-cone Fock representa-

tion for general composite systems. In the next section we will illustrate the formulae by

computing the electron’s electromagnetic and energy–momentum tensor form factors to

one-loop order in QED. In fact, the structure of this calculation has much more generality

and can be used as a template for more general composite systems.

3. The light-cone Fock state decomposition and spin structure of leptons in QED

The Schwinger one-loop radiative correction to the electron current in quantum

electrodynamics has played a historic role in the development of quantum field theory.
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Physics of DVCS
• Generalized Compton scattering

• Interference with Bethe-Heitler gives real and imaginary parts of 
virtual Compton amplitude

• Local two-photon interaction produces  J=0 fixed pole                                       

• Imaginary  part of forward virtual Compton amplitude gives DIS 
structure functions

• Regge theory predicts energy dependence at fixed t, q2

• Handbag approximation at large q2

γ∗(q)p → γ(k)p′

M [γ∗(q)p → γ(k)p′] $ ∑
e2q ε · ε′ s0F (t)

γ∗(q)p → γ(k)p′

M [γ∗(q)p → γ(k)p′] $ ∑
e2q ε · ε′ s0F (t)
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Fig. 3. Light-cone time-ordered contributions to deeply virtual Compton scattering. Only the

contributions of leading power in 1/Q are illustrated. These contributions illustrate the factorization

property of the leading twist amplitude.

see Fig. 3. We specify the frame by choosing a convenient parametrization of the light-cone

coordinates for the initial and final proton:

P =
(

P+, !0⊥,
M2

P+

)
, (3)

P ′ =
(

(1− ζ )P+,− !∆⊥,
M2 + !∆2⊥
(1− ζ )P+

)
, (4)

whereM is the proton mass. We use the component notation V = (V +, !V⊥,V −), and our

metric is specified by V ± = V 0±V z and V 2 = V +V − − !V 2⊥. The four-momentum transfer
from the target is

∆ = P − P ′ =
(

ζP+, !∆⊥,
t + !∆2⊥
ζP+

)
, (5)

where t = ∆2. In addition, overall energy–momentum conservation requires ∆− =
P− − P ′−, which connects !∆2⊥, ζ , and t according to

t = 2P · ∆ = −ζ 2M2 + !∆2⊥
1− ζ

. (6)

As in the case of space-like form factors, it is convenient to choose a frame where the

incident space-like photon carries q+ = 0 so that q2 = −Q2 = −!q 2⊥:
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Abstract

We give a complete representation of virtual Compton scattering γ ∗p → γp at large initial photon

virtuality Q2 and small momentum transfer squared t in terms of the light-cone wavefunctions of

the target proton. We verify the identities between the skewed parton distributions H(x, ζ, t) and

E(x, ζ, t) which appear in deeply virtual Compton scattering and the corresponding integrands of

the Dirac and Pauli form factors F1(t) and F2(t) and the gravitational form factors Aq(t) and Bq(t)

for each quark and anti-quark constituent. We illustrate the general formalism for the case of deeply

virtual Compton scattering on the quantum fluctuations of a fermion in quantum electrodynamics at

one loop. ! 2001 Elsevier Science B.V. All rights reserved.

PACS: 12.20.-m; 12.39.Ki; 13.40.Gp; 13.60.Fz

1. Introduction

Virtual Compton scattering γ ∗p → γp (see Fig. 1) has extraordinary sensitivity to

fundamental features of the proton’s structure. Particular interest has been raised by the

description of this process in the limit of large initial photon virtuality Q2 = −q2 [1–5].

Even though the final state photon is on-shell, one finds that the deeply virtual process

probes the elementary quark structure of the proton near the light-cone as an effective

local current, or in other words, that QCD factorization applies [3,6,7].

In contrast to deep inelastic scattering, which measures only the absorptive part of

the forward virtual Compton amplitude, ImTγ ∗p→γ ∗p , deeply virtual Compton scattering

!Work partially supported by the Department of Energy, contract DE-AC03-76SF00515.

E-mail addresses: sjbth@slac.stanford.edu (S.J. Brodsky), markus.diehl@desy.de (M. Diehl),

dshwang@kunja.sejong.ac.kr (D.S. Hwang).
1 Supported by the Feodor Lynen Program of the Alexander von Humboldt Foundation.

0550-3213/01/$ – see front matter ! 2001 Elsevier Science B.V. All rights reserved.
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encode all of the bound state quark and gluon properties of hadrons, including their

momentum, spin and flavor correlations, in the form of universal process- and frame-

independent amplitudes.

The deeply virtual Compton amplitude can be evaluated explicitly by starting from the

Fock state representation for both the incoming and outgoing proton, using the boost

properties of the light-cone wavefunctions, and evaluating the matrix elements of the

currents for a quark target. One can also directly evaluate the non-local current matrix

elements (16) in the same framework. In the following we will concentrate on the

generalized Compton form factors H and E. Formulae analogous to our results can be

obtained for H̃ and Ẽ.

For the n → n diagonal term (∆n = 0), the relevant current matrix element at quark

level is∫
dy−
8π

eixP+y−/2
〈
1;x ′

1P
′+, $p′⊥1,λ′

1

∣∣ψ̄(0)γ +ψ(y)
∣∣1;x1P

+, $p⊥1,λ1
〉∣∣

y+=0,y⊥=0

=
√

x1x
′
1

√
1− ζδ(x − x1)δλ′

1λ1
, (38)

where for definiteness we have labeled the struck quark with the index i = 1. We thus

obtain formulae for the diagonal (parton-number-conserving) contributions to H and E in

the domain ζ ! x ! 1 [17]:
√
1− ζ

1− ζ
2

H(n→n)(x, ζ, t) − ζ 2

4
(
1− ζ

2

)√
1− ζ

E(n→n)(x, ζ, t)

= (√
1− ζ

)2−n
∑
n,λi

∫ n∏
i=1

dxi d
2$k⊥i

16π3
16π3δ

(
1−

n∑
j=1

xj

)
δ(2)

(
n∑

j=1
$k⊥j

)
× δ(x − x1)ψ

↑∗
(n)

(
x ′
i ,

$k′⊥i ,λi

)
ψ

↑
(n)

(
xi, $k⊥i ,λi

)
, (39)

1√
1− ζ

∆1 − i∆2

2M
E(n→n)(x, ζ, t)

= (√
1− ζ

)2−n
∑
n,λi

∫ n∏
i=1

dxi d
2$k⊥i

16π3
16π3δ

(
1−

n∑
j=1

xj

)
δ(2)

(
n∑

j=1
$k⊥j

)
× δ(x − x1)ψ

↑∗
(n)

(
x ′
i ,

$k′⊥i ,λi

)
ψ

↓
(n)

(
xi, $k⊥i ,λi

)
, (40)

where the arguments of the final-state wavefunction are given by

x ′
1 = x1 − ζ

1− ζ
, $k′⊥1 = $k⊥1 − 1− x1

1− ζ
$∆⊥ for the struck quark,

x ′
i = xi

1− ζ
, $k′⊥i = $k⊥i + xi

1− ζ
$∆⊥ for the spectators i = 2, . . . , n.

(41)

One easily checks that
∑n

i=1 x ′
i = 1 and

∑n
i=1 $k′⊥i = $0⊥. In Eqs. (39) and (40) one has to

sum over all possible combinations of helicities λi and over all parton numbers n in the

Fock states. We also imply a sum over all possible ways of numbering the partons in the

n-particle Fock state so that the struck quark has the index i = 1.
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1P
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=
√

x1x
′
1

√
1− ζδ(x − x1)δλ′

1λ1
, (38)

where for definiteness we have labeled the struck quark with the index i = 1. We thus

obtain formulae for the diagonal (parton-number-conserving) contributions to H and E in

the domain ζ ! x ! 1 [17]:
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where the arguments of the final-state wavefunction are given by

x ′
1 = x1 − ζ

1− ζ
, $k′⊥1 = $k⊥1 − 1− x1

1− ζ
$∆⊥ for the struck quark,

x ′
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(41)

One easily checks that
∑n

i=1 x ′
i = 1 and

∑n
i=1 $k′⊥i = $0⊥. In Eqs. (39) and (40) one has to

sum over all possible combinations of helicities λi and over all parton numbers n in the

Fock states. We also imply a sum over all possible ways of numbering the partons in the

n-particle Fock state so that the struck quark has the index i = 1.

Example of LFWF representation 
of GPDs  (n => n)

Diehl,Hwang, sjb
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Analogous formulae hold in the domain ζ − 1 < x < 0, where the struck parton in the

target is an antiquark instead of a quark. Some care has to be taken regarding overall signs

arising because fermion fields anticommute. For details we refer to [17,27].

For the n + 1→ n − 1 off-diagonal term ("n = −2), let us consider the case where
quark 1 and antiquark n + 1 of the initial wavefunction annihilate into the current leaving

n−1 spectators. Then xn+1 = ζ −x1 and #k⊥n+1 = #∆⊥ − #k⊥1. The remaining n−1 partons
have total plus-momentum (1−ζ )P+ and transverse momentum− #∆⊥. The current matrix
element now is∫

dy−
8π
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〈
0
∣∣ψ̄(0)γ +ψ(y)
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and we thus obtain the formulae for the off-diagonal contributions to H and E in the

domain 0! x ! ζ :
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(43)
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(44)

where i = 2, . . . , n label the n − 1 spectator partons which appear in the final-state hadron
wavefunction with

x ′
i = xi

1− ζ
, #k′⊥i = #k⊥i + xi

1− ζ
#∆⊥. (45)

We can again check that the arguments of the final-state wavefunction satisfy
∑n

i=2 x ′
i = 1,∑n

i=2 #k′⊥i = #0⊥. We imply in (43) and (44) a sum over all possible ways of numbering the
partons in the initial wavefunction such that the quark with index 1 and the antiquark with

index n + 1 annihilate into the current.
The powers of

√
1− ζ in (39), (40) and (43), (44) have their origin in the integration

measures in the Fock state decomposition (36) for the outgoing proton. The fractions x ′
i
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Example of LFWF representation 
of GPDs  (n+1 => n-1)
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Verified using 
LFWFs

Diehl,Hwang, sjb
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LFWFS give a fundamental description 
of hadron observables

• LFWFS underly structure functions and 
generalized parton distributions.     

•  Parton number not conserved: n=n’ & n=n’+2 at 
nonzero skewness

• GPDs are not densities or probability 
distributions

• Nonperturbative QCD: Lattice, DLCQ,        
Bethe-Salpeter, AdS/CFT
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FIG. 2: Fourier spectrum of the real part of the DVCS amplitude of an electron vs. σ for M = 0.51

MeV, m = 0.5 MeV, λ = 0.02 MeV, (a) when the electron helicity is not flipped; (b) when the

helicity is flipped. The parameter t is in MeV2.

a proton wavefunction. Convolution of these wavefunctions in the same way as we have done

for the dressed electron wavefunctions will simulate the corresponding DVCS amplitudes for

bound state hadrons. One has to note that differentiation of the single particle wave function

yields zero and thus there is no 3 − 1 overlap contribution to the DVCS amplitude in this

hadron model. It is to be noted that in recent holographic models from AdS/CFT as well

[8] only valence LFWFs are constructed.

The equivalent but easier way is to differentiate the DVCS amplitude with respect to the

initial and final state masses. Here we calculate the quantity M 2
F

∂
∂M2

F

M2
I

∂
∂M2

I

Aij(MI , MF )

where MI , MF are the initial and final bound state masses. For numerical computation, we

use the discrete version of the differentiation

M2 ∂A

∂M2
= M̄2 A(M2

1 ) − A(M2
2 )

δM2
(14)

where M̄2 = (M2
1 +M2

2 )
2 and δM2 = (M2

1 − M2
2 ). We have taken MI1, MF1 = 150 + 1,

MI2, MF2 = 150− 1 MeV and fixed parameters M = 150 and m = λ = 300 MeV. In Figs. 3

and 4 we have shown the DVCS amplitude of the simulated hadron model, both as a function

of ζ and after taking the FT in ζ . In Fig. 4 (c), we have plotted the structure function F2(x)

in this model. The wave function is normalized to 1. There is another interesting aspect of

this model. The γ∗p → γp DVCS amplitude has both real [17] and imaginary parts [18]. If

9
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in this model. The wave function is normalized to 1. There is another interesting aspect of

this model. The γ∗p → γp DVCS amplitude has both real [17] and imaginary parts [18]. If
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FIG. 4: Real part of the DVCS amplitude for the simulated meson-like bound state. The parameters

are M = 150,m = λ = 300 MeV. (a) Helicity non-flip amplitude vs. ζ, (b) Fourier spectrum of

the same vs. σ, (c) Structure function vs. x. The parameter t is in MeV2.

wavefunction because of the momentum transferred to the quark in the hard Compton

scattering. The change in quark momentum along the longitudinal direction ζ can be Fourier

transformed to a boost-invariant distribution in the longitudinal light-front coordinate σ =

1
2y

−P+. In the case of the optical diffraction pattern obtained in a single-slit experiment,

the size of the central maximum is inversely proportional to the width of the slit. Deeply

virtual Compton scattering is analogous to the diffractive scattering of an electromagnetic

wave in optics, where the diffractive pattern in σ reflects the size of the scattering center in

units of the target’s Compton scale.

11

0 0.2 0.4 0.6 0.8 1

!

0

0.01

0.02

0.03

0.04

0.05

R
e
 M

+
+

"(-t)=100

"(-t)=316

"(-t)=707

(a)

-20 -10 0 10 20
#

0

0.001

0.002

0.003

0.004

R
e
 A

+
+

"(-t)=100

"(-t)=316

"(-t)=707

(b)

0 0.2 0.4 0.6 0.8 1
x

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

F
2
(x)/x

F
2
(x)

(c)

FIG. 4: Real part of the DVCS amplitude for the simulated meson-like bound state. The parameters

are M = 150,m = λ = 300 MeV. (a) Helicity non-flip amplitude vs. ζ, (b) Fourier spectrum of

the same vs. σ, (c) Structure function vs. x. The parameter t is in MeV2.

wavefunction because of the momentum transferred to the quark in the hard Compton

scattering. The change in quark momentum along the longitudinal direction ζ can be Fourier

transformed to a boost-invariant distribution in the longitudinal light-front coordinate σ =

1
2y

−P+. In the case of the optical diffraction pattern obtained in a single-slit experiment,

the size of the central maximum is inversely proportional to the width of the slit. Deeply

virtual Compton scattering is analogous to the diffractive scattering of an electromagnetic

wave in optics, where the diffractive pattern in σ reflects the size of the scattering center in

units of the target’s Compton scale.

11

0 0.2 0.4 0.6 0.8 1

!

0

0.01

0.02

0.03

0.04

0.05

R
e
 M

+
+

"(-t)=100

"(-t)=316

"(-t)=707

(a)

-20 -10 0 10 20
#

0

0.001

0.002

0.003

0.004

R
e
 A

+
+

"(-t)=100

"(-t)=316

"(-t)=707

(b)

0 0.2 0.4 0.6 0.8 1
x

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

F
2
(x)/x

F
2
(x)

(c)

FIG. 4: Real part of the DVCS amplitude for the simulated meson-like bound state. The parameters

are M = 150,m = λ = 300 MeV. (a) Helicity non-flip amplitude vs. ζ, (b) Fourier spectrum of

the same vs. σ, (c) Structure function vs. x. The parameter t is in MeV2.

wavefunction because of the momentum transferred to the quark in the hard Compton

scattering. The change in quark momentum along the longitudinal direction ζ can be Fourier

transformed to a boost-invariant distribution in the longitudinal light-front coordinate σ =

1
2y

−P+. In the case of the optical diffraction pattern obtained in a single-slit experiment,

the size of the central maximum is inversely proportional to the width of the slit. Deeply

virtual Compton scattering is analogous to the diffractive scattering of an electromagnetic

wave in optics, where the diffractive pattern in σ reflects the size of the scattering center in

units of the target’s Compton scale.

11

A(σ,∆⊥) = 1
2π

∫
dζe

i
2σζM(ζ,∆⊥)

P+, $P+

xiP
+, xi

$P⊥+ $k⊥i

ζ = Q2

2p·q

ẑ
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Diffractive 
Dissociation of Pion

Measure Light-Front Wavefunction of Pion
Two-gluon Exchange

Minimal momentum transfer to nucleus
Nucleus left Intact

E791 Ashery et al.
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Fluctuations of extra 
gluons and quark-
antiquark pairs 
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Key Ingredients in Ashery Experiment

1.   Quantum Fluctuations of a hadron wavefunction

Pion wavefunction fluctuates not only in size, but also in 
particle number
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Key Ingredients in Ashery Experiment
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Local gauge-theory interactions 
measure transverse size of color dipole
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Key Ingredients in Ashery Experiment

Vector gluon exchange gives amplitudes
proportional to energy, constant cross sections
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Key Ingredients in Ashery Experiment

Two-gluon exchange gives imaginary amplitude
proportional to energy, constant diffractive cross sections
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Fluctuation of a Pion to a Compac! 
Color Dipole Stat"

Color - Transparent Fock State Produces High 
Transverse Momentum Di-Jets

Same Fock State 
Determines Weak 

Decay
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Key Ingredients in Ashery Experiment

Small color-dipole moment pion not absorbed; 
interacts with each nucleon coherently 

QCD COLOR Transparency
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Key Ingredients in Ashery Experiment

Nuclear Coherence:  Small color-dipole moment pion 
persists over long distances and time

Uncertainty principle:
Small Longitudinal 

Momentum Transfer 
implies long coherence 

length
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Fluctuation of a Pion to a 
Compact Color Dipole State

Small Size Pion Can 
Interact Coherently on 

Each Nucleon of 
Nucleus

Diffractive Dijet Cross Section Color Transparent

M(πA→ JetJetA′)=A1M(πN→ JetJetN ′)FA(t)
dσ/dt(πA→ JetJetA′) =
A2dσ/dt(πN→ JetJetN ′)|FA(t)|2
σ ∝ A2

R2A
∼ A4/3
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D. Ashery / Progress in Particle and Nuclear Physics 56 (2006) 279–339 301

Table 1

The exponent in σ ∝ Aα , experimental results for coherent dissociation and the color-transparency (CT) predictions [69]

kt bin (GeV/c) α #αstat #αsys #α α(CT)

1.25–1.5 1.64 ±0.05 +0.04–0.11 +0.06–0.12 1.25

1.5–2.0 1.52 ±0.09 ±0.08 ±0.12 1.45

2.0–2.5 1.55 ±0.11 ±0.12 ±0.16 1.60

Fig. 14. q2t distributions of dijets with 1.5 ≤ kt ≤ 2.0 GeV/c for the platinum and carbon targets. The lines are fits of the

MC simulations to the data: coherent nuclear dissociation (dotted line), coherent nucleon/incoherent nuclear dissociation

(dashed line), background (dashed–dotted line) and total fit (solid line).

note also that in their more recent work [70] the authors carried out more detailed calculations

and predicted a value α = 1.54.

This process was calculated also by Nikolaev et al. [74] who include higher twist corrections.

They calculate the α dependence and their results are very similar to those shown in Table 1 as
derived from [69].

In summary of this section we may conclude that color transparency was well demonstrated

in vector meson electroproduction and in diffractive dissociation of the pion to dijets. It was not

unambiguously verified for the proton. It is important to understand the experimental results for

the proton: why (e, e′ p) experiments show no sign of CT and why (p, 2p) experiments show a

rise and fall of transparency, strongly deviating from Glauber calculations and at the same time

not reproducing the expected CT signature. It can be expected that if the effect exists in the qq̄

system it should also exist for the qqq system. One could argue that the probability to find a qq̄ at

short distances is higher than that to find a qqq in short distances. If we interpret these systems as

the valence components of their respective LCWFs, this may indicate that the contribution of the

valence component to the total LCWF may be different for mesons and baryons. The difficulties

encountered in understanding the anomalous spin effects in pp scattering [25,26] leave this as an

open question. For observation of CT with protons there might also be the problem of choosing

the sensitive process: reaction, momentum transfer etc. that would select a proton in a PLC

state and the observable that would identify it as such. It may be that diffractive dissociation

of protons or perhaps baryon photoproduction would show this effect. Following the example

Nuclear coherence Nuclear coherence
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E791 Collaboration, E. Aitala et al., Phys. Rev. Lett. 86, 4773 (2001)

A-Dependence results: σ ∝ Aα

kt range (GeV/c) α α (CT)

1.25 < kt < 1.5 1.64 +0.06 -0.12 1.25

1.5 < kt < 2.0 1.52 ± 0.12 1.45

2.0 < kt < 2.5 1.55 ± 0.16 1.60

α (Incoh.) = 0.70 ± 0.1

Conventional Glauber 
Theory Ruled Out ! 

FermiLab E791 
Ashery et al

50

Ashery E791: 
Measure pion LFWF in diffractive dijet production 

Confirms color transparency !

Mueller, sjb; Bertsch et al; Frankfurt, Miller, Strikman

Factor of 7
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note also that in their more recent work [70] the authors carried out more detailed calculations

and predicted a value α = 1.54.

This process was calculated also by Nikolaev et al. [74] who include higher twist corrections.

They calculate the α dependence and their results are very similar to those shown in Table 1 as
derived from [69].

In summary of this section we may conclude that color transparency was well demonstrated
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Key Ingredients in Ashery Experiment

Two-gluon exchange measures the second derivative of the pion
light-front wavefunction
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Fig. 23. The Acceptance-corrected u distributions of diffractive dijets obtained by applying correction to the E791

results [96]. The distributions are for 1.25 ≤ kt ≤ 1.5 GeV/c (left) and for 1.5 ≤ kt ≤ 2.5 GeV/c (right). The

solid line is a fit to a combination of Gegenbauer polynomials, Eq. (49).

were very stable. The fact that a4 "= 0, which seems to be essential for a reasonable fit, indicates

a distribution amplitude that is different from φCZ as defined in Eq. (37) which contains only a
a2 term [32].

3.3.4. Transverse momentum distribution

As discussed in Section 2.3, derivation of the cross section for diffractive dissociation [69]

is based on the double-differentiation of the LCWF with respect to kt (Eq. (26)). More

specifically:

dσ

dk2t
∝ |αs(k2t )xNG(u, k2t )|2

∣∣∣∣ ∂2

∂k2t
ψ(u, kt )

∣∣∣∣2 , (50)

with xN = 2k2t /s and GN the gluon distribution function in the nucleon. This double-

differentiation leads to a prediction of the kt dependence of the cross section. By comparing the

measured and predicted kt distributions it is possible to test to what extent the assumptions used

in deriving the cross section are correct with sensitivity to both the LCWF and the interaction.

When applying Eq. (26) to the pion LCWF given by Eq. (46) the differentiation with respect to

kt does not modify the u-dependence if k
2
t $ µ2. An additional kt dependence comes from the

gluon distribution in the nucleon. With αs(k
2
t )xNG(u, k2t ) ∼ k

1
2
t [97] this yields:

M(N) ∝ xNGN

k4t
,

dσ

dk2t
∝ (xNGN )2

k8t
,

dσ

dkt
∝ k−6

t (51)

and the u-dependence is the same as for φ2(u), Eq. (27). The experimental results are shown in
Fig. 24 where they are compared with several fits. An attempt to fit the data over the whole kt
range to a power-law dependence: dσ

dkt
∝ knt resulted in n = −9.2 ± 0.4(stat) ± 0.3(sys), much

larger than expected from Eq. (51). This result is dominated by the low kt high statistics region.

It can be seen that for the larger kt the slope changes and when only the kt > 1.8 GeV region is

fit to a power-law the result is n = −6.5 ± 2.0, consistent with the predictions, Fig. 24(a, b).
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Fig. 25. Diagram of diffractive dissociation of a pion to two jets used for the calculations by Chernyak [103] and by

Braun et al. [102,106].

3.3.5. Has E791 measured the pion distribution amplitude?

Following publication of the E791 results [96] several theoretical papers were published

discussing the question of whether they can indeed be taken as measurement of the pion

distribution amplitude. The subject was also discussed in several conferences [104]. We bring

here a brief summary of the main points that were raised and add some comments. The main

questions that were discussed are:

• Is the cross section for the process indeed proportional to φ(u)2 as claimed in Eq. (27) [69]?
• Are the results precise enough to distinguish between φAsy(u) and other forms of φ(u)?

Nikolaev et al. [74] calculate the cross section for diffractive dissociation of pions to dijets

using pQCD methods. They show that the cross section is proportional to φ2(u) and to the

unintegrated gluon structure function of the nucleon. They disagree with Frankfurt et al. [69] who

used the integrated gluon structure function. They calculate higher-twist effects which contain

some u-dependence but show that in nuclear medium they are suppressed. As a result, when the

measurements are done in a heavy nuclear target the cross section is proportional to φ(u)2 and
can be used to determine it. Hence their response to the first question is positive. Concerning the

shape of φ(u) they propose a soft model distribution amplitude that has a different mathematical

form than that of φAsy(u) but has a very similar u-dependence. Because of this similarity they
conclude that the E791 results are consistent with their calculations as well. They are also able

to reproduce the kt and A dependence observed in the experiment.

V. Chernyak [103–105] calculates the process described in Fig. 25. The lower blob in the

diagram represents the skewed gluon distribution of the nucleon. The upper blob represents the

hard kernel of the amplitude that consists of 31 connected Born diagrams. Nuclear effects and

the quark transverse momenta are ignored. Calculations of these diagrams lead to an expression

for the amplitude which is not proportional to φ(u) but rather to a sum of four integrals over

φ(u) multiplied by expressions that contain u-dependence. His conclusion is that the cross
section depends on φ2(u) in a complicated way hence measurement of the cross section cannot

provide a measurement of φ2(u). Chernyak disagrees with the authors of [74] as they ignore

the contributions where the jet momenta differ significantly from the quark momenta. He agrees

that making this assumption will lead to proportionality of the cross section and φ2(u). He also

disagrees with the authors of [69] that ignored contributions from diagrams that are, according

to their evaluation of the E791 conditions, suppressed by Sudakov form factors. Following these

arguments Chernyak applies his calculations to φAsy(u) and to φCZ(u) which he evolves to the

scale of 2 GeV. He does it by treating the pion as free qq̄ and does not use the logarithmic
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Fig. 6. Nuclear transparencies TrincA measured for incoherent ρ0 production by Fermilab experiment E665 [61]. The

calculations are from [64]; solid line with full calculations, dashed lines with frozen approximation.

An important difference between VM production and quasi-elastic scattering in nuclei is that

the kinematic constraints discussed for quasi-elastic scattering do not exist, or are at least much

weaker for VM production.One then can vary almost independently the coherence and formation

lengths. Both coherent and incoherent processes were discussed in great detail in [64–66] where

the authors pay particular attention to the identification of coherence length effects and CT

effects. In [64] the authors calculate the VM production cross section on the nucleon using

a similar approach to that of [16]. They use a photon LCWF in coordinate space modified to

avoid end-point singularities. For the VM they use a boosted Gaussian wave function and for the

interaction a phenomenological dipole cross section σq̄q . The resulting amplitude for the process
is:

Mγ ∗N→V N (s, Q2) =
∫ 1

0

du

∫
d2r Ψ∗

V (#r , u) σq̄q(#r , s)Ψγ ∗(#r , u, Q2). (20)

They deduce the t-dependence by fitting data with an expression similar to Eq. (18) and with this

fit obtain good agreement with measured ρ0 and φ production on the proton.
For VM incoherent production in nuclei the authors [64] use Eq. (20) modified by a Green

function to describe propagation of the qq̄ in the nuclear medium attenuated by a simplified

dipole cross section. The results then depend on the size of the coherence length. For large

coherence lengths (%c, % f $ RA) the frozen approximation is valid, and the transparency is

calculated with only Q2 dependence showing clean CT effect. The calculations are compared

with the experimental results of the E665 collaboration [61] that measured ρ0 production in DIS
of 470 GeV/c muons on hydrogen, deuterium, carbon, calcium and lead. At these high energies,

with ν > 100 GeV, the coherence lengths are large: %c, % f $ RA. The results are shown in

Fig. 6. The increasing transparency with Q2 shows that the size of the produced qq̄ system that

eventually couples into the ρ0 is smaller for larger Q2 and interacts weakly in the nucleus. At

very small xB j this effect may be partially offset by nuclear shadowing [69]. The deviation from

the frozen approximation for Pb at large Q2 comes from the reduction of %c which is no longer
large compared with the Pb radius. In this experiment there are no complications due to mixing

of coherence length and CT effects.
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Verification of color transparency in  incoherent 
vect0r meson electroproduction 
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πA→ JetJetA′

ψπ
qq̄(x,!k⊥)

D. Ashery, Tel Aviv University

THE qq̄ MOMENTUM WAVE FUNCTION

MEASURED BY DI-JETS

Fermilab E791 Collaboration, PRL 86, 4768 (2001)

1.5GeV/c ≤ kt ≤ 2.5GeV/c; Q2 ∼ 16 (GeV/c)2 : φ2 > 0.9φ2
Asy

1.25GeV/c ≤ kt ≤ 1.5GeV/c; Q2 ∼ 8 (GeV/c)2 :

φ2 contains contributions from CZ or other non-perturbative wave functions

x

Diffractive Dissociation of a 
Pion into Dijets

• E791 Fermilab Experiment 
Ashery et al

• 500 GeV pions collide on 
nuclei keeping it intact

• Measure momentum of two 
jets

• Study momentum distributions 
of pion LF wavefunction
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Fig. 24. Comparison of the experimental kt distribution [96] with fits derived from: (a) Gaussian LCWF [98] for low kt
and a power law dependence: dσ

dkt
∝ knt , as expected from perturbative calculations, for high kt ; (b) Two-term Singlet-

Model wave function [99] for low kt and a power law for high kt .

This is also consistent with the conclusions of Sections 3.3.2 and 3.3.3 that the asymptotic

distribution amplitude agrees with the data only for the large kt region. Both results indicate

that for kt > 1.5 GeV/c, which translates to Q2 > 10 (GeV/c)2 the asymptotic distribution
amplitude and the pQCD calculations are applicable. Below this value non-perturbative effects

may play a significant role. This answers the question raised at the end of Section 3.1 concerning

the Q2 value where the distribution amplitude may resemble the asymptotic one. Naturally, the

transition between the two regions is not sharp. The region of 1.0 ≤ kt ≤ 1.8 GeV/c may

be a transition region where we can still apply pQCD techniques and in particular Eq. (26) but

must use LCWFs that better describe the non-perturbative structure of the pion. In Fig. 24(a) we

show the results [96] of fitting the low kt region with the cross section derived with Eq. (26) and

the non-perturbative Gaussian function: ψ ∼ e−βk2t [98], resulting in β = 1.78 ± 0.1. Model-

dependent values for β in the range of 0.9–4.0 were predicted [98]. This fit, although resulting

in the parameter β being consistent with theoretical expectations, is not very satisfactory. As

seen in Fig. 24(a) the curved shape of the theoretical calculation is not observed in the data. In

Fig. 24(b) we show the results of fitting the low kt region using the non-perturbative two-term

Coulomb wave function [99] which describes the Lz = Sz = 0 component of the ud̄ wave

function: ψ(u, %k⊥) ≡ Ψud̄(u,
%k⊥; ↑↓). [100,101]:

ψ(u, %k⊥) = ϕ(kz, %k⊥)√
u(1− u)

, ϕ( %p) = A(
p2a + %p 2)2 + B(

p2b + %p 2)2 (52)

where A, B, pa, pb are parameters of fitting this function to the numerically calculated LCWF.
The agreement with this function is very good. These comparisons show that the transition region

may be described using non-perturbative LCWFs. Since this is a relatively large kt region for

non-perturbative interactions, it is actually the high momentum tail of the functions that is being

compared. The observed sensitivity shows that the kt distribution is useful in studying wave

functions in this transition region.
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M ∝ A, σ ∝ A2

ψ(x,k⊥) ∝ x(1− x)

Compare with  AdS/CFT 
predictions

58

Diffractive Dissociation of 
Pion into Di-Jets

• Verify Color Transparency 

• Pion Interacts coherently 
on each nucleon of 
nucleus!

• Pion Distribution similar 
to Asymptotic Form

• Scaling in transverse 
momentum consistent 
with PQCD
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Coulomb Dissociate Proton 
to Three Jets at HERA

Measure Ψqqq(xi,!k⊥i) valence wavefunction of proton

Frankfurt, Strikman, Miller;
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Fig. 39. Differential cross section dσ/du for the γ → µ+µ− process measured for 30 < W < 170 GeV,

4 < Mµµ < 15 GeV, kT > 1.2 GeV/c and−t < 0.5 (GeV/c)2. The inner error bars show the statistical uncertainty; the

outer error bars show the statistical and systematics added in quadrature. The data points are compared to the prediction

of LCWF theory [16]. The theory is normalized to data.

The kinematic variables are the same as shown in Fig. 37, replacing µ by π . These are W ,

the γ ∗ p center-of-mass energy, Q2, the photon virtuality, t the square of the four momentum
exchanged at the proton vertex, and u, the longitudinal momentum-fraction carried by the pion.

The kinematic region for this measurement is defined as: 2 < Q2 < 20 GeV2, 1.2 < Mππ <

5 GeV, 40 < W < 120 GeV, |t| < 0.5 GeV2, 0.1 < u < 0.9 (to avoid regions of low
acceptance). At that stage a remaining contamination of about 8% from proton dissociative events

was not subtracted. The acceptance corrections and resolution effects were determined using the

dedicated Monte Carlo ZEUSVM generator [132].

4.7.2. Results

Differential cross sections as a function of Mππ , t and u are presented in Figs. 40, 41, 42

respectively. The systematic uncertainties are dominated by the uncertainties related to the trigger

selection and identification of the scattered positron.

As can be seen from Eqs. (74) and (75) the predicted dependence of the cross sections on

Q2 and M2
ππ are strongly coupled. Consequently, there is no simple prediction for the mass

dependence unless either M2
ππ is very different from Q2 or a well defined value of Q2 is

selected. In the ZEUS experiment Q2 and the mass have similar values and it is impractical

to select a narrow Q2 range because of limited statistics. The authors therefore chose to make

a power-law fit to the mass distribution: 1/Mn
ππ with a result: n ≈ 4.5. This distribution, when

divided by the mass dependence of the γ ∗ p → qq̄ cross section is proportional to the pion

time-like form factor squared. It can be used to extend the measurements of this form factor

from the highest available value at 2 GeV [93] up to about 4 GeV. Such results will provide

an alternative measurement of this form factor from the evaluation at the J/ψ mass deduced

from the (J/ψ → π+π−)/(J/ψ → e+e−) [94] which is in great disagreement with theoretical

predictions [91].
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Measurement of the photon QED LFWF 

Ashery
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The remarkable anomalies of 
proton-proton scattering 

• Double spin correlations

• Single spin correlations

• Color transparency
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PQCD and Exclusive Processes

• Iterate kernel of LFWFs when at high virtuality; distribution 
amplitude contains all physics below factorization scale

• Rigorous Factorization Formulae: Leading twist

• Underly Exclusive B-decay analyses

• Distribution amplitude: gauge invariant, OPE, evolution 
equations, conformal expansions

• BLM scale setting: sum nonconformal contributions in scale 
of running coupling

• Derive Dimensional Counting Rules/ Conformal Scaling

M =
∫ ∏

dxidyiφF (x, Q̃)×TH(xi, yi, Q̃)φI(yi, Q)

Lepage; SJB
Efremov, Radyuskin
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Hadron Spectroscopy and 
Structure from AdS/CFTQNP06

June 8, 2006

• Point-like quark and gluon constituents plus scale-invariant 
interactions

• Fall-off of Amplitude measures degree of compositeness (twist)

• Near-Conformal Invariance of QCD

• QCD: Logarithmic Modification by running coupling and Evolution 
Equations 

• Angular and Spin Dependence -- Fundamental Wavefunctions: 
Hadron Distribution Amplitudes
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FH(t) ∝ 1
tnH−1

MAB→CD(s, t) = F (θcm)
sntot−4

dσ
dt (s, t) = F (θcm)

s[2ntot−2]

s = E2
cm

−t = Q2

φH(xi, Q)

ψ(x, k⊥)

FH(t) ∝ 1
tnH−1

MAB→CD(s, t) = F (θcm)
sntot−4

dσ
dt (s, t) = F (θcm)

s[2ntot−2]

s = E2
cm

−t = Q2

φH(xi, Q)

ψ(x, k⊥)

FH(t) ∝ 1
tnH−1

MAB→CD(s, t) = F (θcm)
sntot−4

dσ
dt (s, t) = F (θcm)

s[2ntot−2]

s = E2
cm

−t = Q2

φH(xi, Q)

ψ(x, k⊥)

A

B

C

D

Lepage, sjb; Efremov, Radyushkin

Constituent Counting Rules

Farrar, sjb; Matveev et al

FH(t) ∝ 1
tnH−1

MAB→CD(s, t) = F (θcm)
sntot−4

dσ
dt (s, t) = F (θcm)

s[ntot−2]

s = E2
cm

−t = Q2

φH(xi, Q)

ψ(x, k⊥)

[CF =
N2

C−1
2NC

]

FH(Q2)× [Q2]nH−1 ∼ constant

[Q2]nH−1FH(Q2) ∼ constant

FH(Q2) ∼ [ 1
Q2]

nH−1

fd(Q
2) ≡ Fd(Q

2)

Fp(
Q2
4 )Fp(

Q2
4 )

fd(Q
2) ∼ Fπ(Q2)
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Conformal Behavior : t2F1(t) = const

Non-perturbative model: 
Diehl, Kroll

Remarkable scaling 
behavior -- no signal for 
QCD running coupling
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FIG. 3. The scaled differential cross section s7 dσ
dt versus center-of-mass energy for the

γp → π+n at θcm = 90◦. The data from JLab E94-104 are shown as solid circles. The er-
ror bars for the new data and for the Anderson et al. data [1], include statistical and systematic
uncertainties. Other data sets [26,27] are shown with only statistical errors. The open squares
in the lower plot were averaged from data at θcm = 85◦ and 95◦ [28]. The solid line was obtained
from the recent partial-wave analysis of single-pion photoproduction data [29] up to Eγ=2 GeV,
while the dashed line from the MAID analysis [30] up to Eγ=1.25 GeV.

10

Test of PQCD Scaling

PQCD and AdS/CFT:

sntot−2dσdt (A+B→C+D) =
FA+B→C+D(θCM)

s7dσdt (γp→ π+n) = F(θCM)
ntot = 1+3+2+3= 9

s7dσ/dt(γp→ π+n)∼ const
f ixed θCM scaling

Conformal invariance at high  momentum transfers!

Constituent counting rules Farrar, sjb; Muradyan, Matveev, Taveklidze

No sign of running coupling
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Quark-Counting : dσ
dt (pp→ pp) = F (θCM)

s10

Data: n = 9.7± 0.5

powern = 4× 3− 2 = 10

√
s =

e+

q

q̄

dσ
dt (pp→ pp) = F (θCM)

s10

Data: n = 9.7± 0.5

n = 4× 3− 2 = 10

√
s =

e+

q

q̄

dσ
dt (pp→ pp) = F (θCM)

s10

Data: n = 9.7± 0.5

n = 4× 3− 2 = 10

√
s =

e+

q

q̄

Best Fit  

cm2

GeV2

Reflects
underlying 
conformal 
scale-free 

interactions



 
 Stan Brodsky,  SLAC QCD PhenomenologyNNPSSJuly 2006 69

Quark-Counting  D. Sivers et a!., Large transverse momentum processes 21

s(Gev
2)

2 3 4 6 810 20 30
I I I I 1111 I

02 K~p—--K4p -

I I I I 11111
I 2 34 6810

PIOb(GeV/C)

Fig. 2.1.6. K~pscattering at 90°in the cm.

This factorization is indicated more clearly in fig. 2.1.8 where the pp cross section data at differ-

ent energies normalized to the 90°cross section are plotted as a function of cos 0. It is interesting

to investigate possible corrections to eq. (2.1 .2) but we will defer this until we can discuss the im-

plications of various possible models for the cross section.

The systematics of differential cross section measurements are important but ifwe are to deduce

amplitude structure for the various processes it is necessary to have more information. Polarization

measurements are obviously important but, because of the small counting rates, there have been
very few polarization experiments extending to large angles. The data of Abshire et al. [2] include

polarization measurements for pp elastic scattering out to t = —6 GeV2. This data is shown com-
bined with some small-i’ polarization measurements in fig. 2.1.9. Two features are notable. The

polarization does not vanish at large t at this energy and there is evidence for some structure,

perhaps double zeros at t ~ —1, —2.5, —4GeV2. We can conclude that a single spin amplitude

does not dominate in this range of momentum transfer and that the different amplitudes have

potentially complicated behavior at large momentum transfer.

Another type of structure which may be important at large t consists of rapid fluctuations of
amplitudes with energy or with angle. This behavior, known as Ericson Fluctuations [113], is

familiar in nuclear physics. Experiments designed to look for Ericson fluctuations in pp elastic
scattering have not reported any evidence for the phenomenon. Allaby et al. [51 examined pp -~ pp
at 16.9 GeV/c over a range of angles and Akerlof et al. [3] looked at °CM= 90°over a range of

dσ
dt (pp→ pp) = F (θCM)

s10

Data: n = 9.7± 0.5

n = 4× 3− 2 = 10

dσ
dt (K

+p→ K+p) = F (θCM)
s8

Data: n = 9.7± 0.5

n = 2× 3 + 2× 2 = 8

√
s =

dσ
dt (pp→ pp) = F (θCM)

s10

Data: n = 9.7± 0.5

n = 4× 3− 2 = 10

dσ
dt (K

+p→ K+p) = F (θCM)
s8

Data: n = 9.7± 0.5

n = 2× 3 + 2× 2− 2 = 8

√
s =
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Fig. 5. Cross section for (a) γγ→π+π−, (b) γγ→K+K− in the c.m. angular region
|cos θ∗| < 0.6 together with a W−6 dependence line derived from the fit of s|RM |.
(c) shows the cross section ratio. The solid line is the result of the fit for the data
above 3 GeV. The errors indicated by short ticks are statistical only.

6 Systematic errors

The dominant systematic errors are listed in Table 2. The uncertainty due
to trigger efficiency is estimated by comparing the yields of γγ → µ+µ− in
real and simulated data [9] after accounting for the background from e+e− →
µ+µ− nγ events (varying with W from 0.5–4.6%), which have the same topol-
ogy [13]. The uncertainty in the relative muon identification efficiency between
real and simulated data is used to determine the error associated with the
residual µ+µ− subtraction from the π+π− sample. We use an error of 100% of
the subtracted value for the non-exclusive background subtraction. We allow
the number of χcJ events to fluctuate by up to 20% of the measured excess to
estimate the error due to the χc subtraction that is applied for the energy bins
in the range 3.3 GeV < W < 3.6 GeV. The total W -dependent systematic
error is 10–33% (10–21%) for the γγ → π+π− (γγ → K+K−) cross section.

11

PQCD, AdS/CFT:
Δσ(γγ→ π+π−,K+,K−)∼ 1/W 6

|cos(θCM)| < 0.6

s = E2
cm = W2 = Q2

Q4GMp(Q
2)

Q2FK(Q2)

FH(t) ∝ 1
tnH−1

MAB→CD(s, t) = F (θcm)
sntot−4

dσ
dt (s, t) = F (θcm)

s[2ntot−2]

γγ → π+π−

γγ → K+K−

s = E2
cm = W2 = Q2

Q4GMp(Q
2)

Q2FK(Q2)

FH(t) ∝ 1
tnH−1

MAB→CD(s, t) = F (θcm)
sntot−4

γγ → π+π−

γγ → K+K−

s = E2
cm = W2 = Q2

Q4GMp(Q
2)

Q2FK(Q2)

FH(t) ∝ 1
tnH−1

MAB→CD(s, t) = F (θcm)
sntot−4
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1.227 × sin−4 θ∗. The errors are statistical only.

dσ

d|cos θ∗|(W, |cos θ∗|; γγ → X ) =
∆N(W , |cos θ∗|; e+e− → e+e−X )

Lγγ(W )∆W ∆|cos θ∗|ε(W , |cos θ∗|)∫Ldt
(2)

where N and ε denote the number of the signal events and a product of de-
tection and trigger efficiencies, respectively;

∫Ldt is the integrated luminosity,
and Lγγ is the luminosity function, defined as Lγγ(W ) = dσ

dW
(W ; e+e− →

e+e−X)/σ(W ; γγ→X).

The efficiencies ε(W, |cos θ∗|) for γγ → π+π− and γγ → K+K− are obtained
from a full Monte Carlo simulation [11], using the TREPS [12] program for
the event generation as well as the luminosity function determination. The
trigger efficiency is determined from the trigger simulator. The typical value
of the trigger efficiency is ∼ 93% for events in the acceptance.

The efficiency-corrected measured differential cross sections for γγ → π+π−

and γγ → K+K−, normalized to the partial cross section σ0 for |cosθ∗| < 0.6,
are shown in Fig. 4 for each 100 MeV wide W bin. The partial cross sections
σ0 for both processes, integrated over the above scattering angle range, are
shown in Fig. 5 (along with their ratio) and itemized in Table 1.
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Abstract

We have measured π+π− and K+K− production in two-photon collisions using
87.7 fb−1 of data collected with the Belle detector at the asymmetric energy e+e−

collider KEKB. The cross sections are measured to high precision in the two-photon
center-of-mass energy (W ) range between 2.4GeV < W < 4.1GeV and angular
region |cos θ∗| < 0.6. The cross section ratio σ(γγ → K+K−)/σ(γγ → π+π−) is
measured to be 0.89 ± 0.04(stat.) ± 0.15(syst.) in the range of 3.0GeV < W <
4.1GeV, where the ratio is energy independent. We observe a sin−4 θ∗ behavior of
the cross section in the same W range. Production of χc0 and χc2 mesons is observed
in both γγ → π+π− and γγ → K+K− modes.

Key words: two-photon collisions, mesons, QCD, charmonium
PACS: 12.38Qk, 13.25.Gv, 13.66.Bc, 13.85.Lg

1 Introduction

Exclusive processes with hadronic final states test various model calculations
motivated by perturbative or non-perturbative QCD. Two-photon production
of exclusive hadronic final states is particularly attractive due to the absence of
strong interactions in the initial state and the possibility of calculating γγ →
qq amplitudes. The perturbative QCD calculation by Brodsky and Lepage
(BL) [1] is based on factorization of the amplitude into a hard scattering
amplitude for γγ → qq̄qq̄ and a single-meson distribution amplitude. Their
prediction gives the dependence on the center-of-mass (c.m.) energy W (≡√

s)
and scattering angle θ∗ for γγ → M+M− processes

dσ

d|cos θ∗|(γγ → M+M−) ≈ 16πα2

s

|FM(s)|2
sin4 θ∗

, (1)

where M represents a meson and FM denotes its electromagnetic form factor.
Vogt [2], based on the perturbative approach, claimed a need for soft contribu-
tions, as his result for the hard contribution was well below the experimental
cross section obtained by CLEO [3].

Diehl, Kroll and Vogt (DKV) proposed [4] the soft handbag contribution to
two-photon annihilation into pion or kaon pairs at large energy and momentum
transfers, in which the amplitude is expressed by a hard γγ → qq subprocess
and a form factor describing the soft transition from qq to the meson pair.

1 on leave from Nova Gorica Polytechnic, Nova Gorica, Slovenia

4
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Deuteron Photodisintegration & Dimensional Counting Rules 

PQCD and AdS/CFT:

sntot−2dσdt (A+B→C+D) =
FA+B→C+D(θCM)

s11dσdt (γd→ np) = F(θCM)

ntot−2=
(1 + 6 + 3+ 3 ) - 2 = 11

Conformal invariance 
at high  momentum transfers!
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Fit of dσ/dt data for 
the central angles and 
PT≥1.1 GeV/c  with 

 A s-11

For all but two of the fits 
  χ2≤  1.34

Data consistent with CCR

P.Rossi et al, P.R.L. 94, 012301 (2005)

•Better χ2 at 55o and 75o if different data 
 sets are renormalized to each other

•No data at PT≥1.1 GeV/c at forward and   
 backward angles

•Clear s-11 behaviour for last 3 points at 35o 

ntotal = 13

s11dσ
dt (γd→ np) = F (θCM)

x2
µ → λ2x2

µ

z → λz

ψ(z0) = 0

0 < z < z0

z0 = 1
ΛQCD
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Ji, Lepage, sjb
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QCD Prediction for Deuteron 
Form Factor 

Define “Reduced” Form Factor

Same large momentum transfer 
behavior as pion form factor
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2Elastic electron-deuteron scattering

fd(Q
2) ≡ Fd(Q

2)

Fp(
Q2
4 )Fp(

Q2
4 )

fd(Q
2) " Fπ(Q2)

e e′

γ∗

q

d

fd(Q
2) ≡ Fd(Q

2)

Fp(
Q2
4 )Fp(

Q2
4 )

fd(Q
2) ∼ Fπ(Q2)

d′

e e′

γ∗

q

Define “Reduced” Form Factor

ψ(z) ∼ z∆ at z → 0

[CF =
N2

C−1
2NC

]

FH(Q2)× [Q2]nH−1 ∼ constant

[Q2]nH−1FH(Q2) ∼ constant

FH(Q2) ∼ [ 1
Q2]

nH−1

fd(Q
2) ≡ Fd(Q

2)

Fp(
Q2
4 )Fn(

Q2
4 )
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! Pion Form Factor×15%

• 15% Hidden Color in the Deuteron
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What is the role of binding energy in the EMC effect? 

What is the role of Fermi momentum (at high x)? 

Do virtual pions play any role at all?

EMC Effect in 3He and 4He
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Do multi-quark clusters exist in the nuclear wavefunction? 

Do they contribute significantly to the EMC effect?

How to answer: tag overlapping nucleons…

Hidden Color!

Does the nucleus  only consist of nucleons?
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Hidden Color 
Fock State

Delta-Delta 
Fock State

Structure of   
Deuteron in 

QCD
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dσ
dt (γd→ Δ++Δ−)# dσ

dt (γd→ pn) at high Q2

dσ
dt (γd→ Δ++Δ−)# dσ

dt (γd→ pn) at high Q2

Lepage, Ji, sjb• Deuteron six quark wavefunction:

•  5 color-singlet combinations of 6 color-triplets -- 
one state  is |n  p>

• Components evolve towards equality at short 
distances

• Hidden color states dominate deuteron form 
factor and photodisintegration at high 
momentum transfer

• Predict 
Ratio  = 2/5 for asymptotic wf

Hidden Color
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Quark-Counting : dσ
dt (pp→ pp) = F (θCM)

s10

Data: n = 9.7± 0.5

powern = 4× 3− 2 = 10

√
s =

e+

q

q̄

dσ
dt (pp→ pp) = F (θCM)

s10

Data: n = 9.7± 0.5

n = 4× 3− 2 = 10

√
s =

e+

q

q̄

dσ
dt (pp→ pp) = F (θCM)

s10

Data: n = 9.7± 0.5

n = 4× 3− 2 = 10

√
s =

e+

q

q̄

Best Fit  

cm2

GeV2

Reflects
underlying 
conformal 
scale-free 

interactions
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Ideas for CarlFest

May 4, 2005

Spin Correlations in Elastic p− p Scattering
RNN

pT

Collisions Between Spinning Protons (A. D. Krisch)
Scientific American, 255, 42-50 (August, 1987).

1

Ratio reaches 4:1 !

Ideas for CarlFest

May 4, 2005

Spin Correlations in Elastic p− p Scattering
RNN

pT

Collisions Between Spinning Protons (A. D. Krisch)
Scientific American, 255, 42-50 (August, 1987).

1
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Spin Correlations in Elastic p− p Scattering
RNN

pT

Collisions Between Spinning Protons (A. D. Krisch)
Scientific American, 255, 42-50 (August, 1987).

1

Ideas for CarlFest

May 4, 2005

Spin Correlations in Elastic p− p Scattering
RNN

pT

Collisions Between Spinning Protons (A. D. Krisch)
Scientific American, 255, 42-50 (August, 1987).

AN

plab√
s

1

Ideas for CarlFest

May 4, 2005

Spin Correlations in Elastic p− p Scattering
RNN

pT

Collisions Between Spinning Protons (A. D. Krisch)
Scientific American, 255, 42-50 (August, 1987).

1
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[112]

Exclusive Processes in QCD and Light-Front Wavefunctions

S. Brodsky

   

Return

Strangeness Charm
p Δ
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[125]

Exclusive Processes in QCD and Light-Front Wavefunctions

S. Brodsky

   

Return

Test Color Transparency 

Ideas for CarlFest

May 4, 2005

dσ
dt (pA→ pp(A− 1))→ Z × dσ

dt (pp→ pp)
Spin Correlations in Elastic p− p Scattering
RNN

pT

Collisions Between Spinning Protons (A. D. Krisch)
Scientific American, 255, 42-50 (August, 1987).

AN

plab√
s

1

A.H. Mueller, SJB
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Color Transparency Ratio

J. L. S. Aclander et al.,
“Nuclear transparency in θCM = 900

quasielastic A(p,2p) reactions,”
Phys. Rev. C 70, 015208 (2004), [arXiv:nucl-
ex/0405025].

S. J. Brodsky and G. F. de Teramond, “Spin
Correlations, QCD Color Transparency And
Heavy Quark Thresholds In Proton Proton
Scattering,” Phys. Rev. Lett. 60, 1924 (1988).

Quark Interchange + 8-Quark Resonance
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Color Transparency fails 
when Ann is large 
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Eva 
Experiment  

BNL

Rapid Angular Variation!

Bunce, Carroll, 
Heppelman, 

Piasetzky

 Nuclear transparency in 90 degree c.m. quasielastic A(p,2p) reactions. 
Jaime L.S. Aclander et al. May 2004. 24pp. 
 Published in Phys.Rev.C70:015208,2004 
e-Print Archive: nucl-ex/0405025 
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p
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p
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u
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5-2005
8717A3

Octoquark Resonance at Charm Threshold ?
J=L=S=1

Maximal ANN

Breakdown of Color Transparency

Guy de Teramond & SJB:
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Quark Interchange + 8-Quark Resonance

|uuduudcc̄ > Strange and Charm Octoquark!

M = 3 GeV, M = 5 GeV.

J = L = S = 1, B = 2

S. J. Brodsky and G. F. de Teramond, “Spin
Correlations, QCD Color Transparency And
Heavy Quark Thresholds In Proton Proton
Scattering,” Phys. Rev. Lett. 60, 1924 (1988).

Quark Interchange + 8-Quark Resonance

|uuduudcc̄ > Strange and Charm Octoquark!

M = 3 GeV, M = 5 GeV.

J = L = S = 1, B = 2
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 QCD Phenomenology

• New QCD physics in anti-proton proton elastic 
scattering at the second charm threshold

• Octoquark resonances?

• Color Transparency

• Exclusive Processes: New physics at GSI
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