QCD Phenomenology **in current research in the field. Lecture courses will cover the major** *and* **Step 1: Complete the Online Application Form by April 1,2006.** *Nucleon Structure* \boldsymbol{v} $\boldsymbol{$ **Scholarship:** If you wish to request a full or partial scholarship in order to attend NNPSS, please make the request as part of your application, ϵ **Step 2: Your application will be reviewed and you will be notified of**

Stan Brodsky, SLAC

Lecture I

National Nuclear Physics Summer School

QCD Phenomenology

The World of Quarks and Gluons:

- Quarks and Gluons: Fundamental constituents of hadrons and nuclei
- Remarkable and novel properties of *Quantum Chromodynamics (QCD)*
- New Insights from higher space-time dimensions: Holography

QCD Phenomenology

Stan Brodsky, SLAC NNPSS

QCD Lagrangian

Generalization of QED

Yang Mills Gauge Principle: Color Rotation and Phase Invariance at Every Point of Space and Time

Scale-Invariant Coupling Renormalizable Nearly-Conformal Asymptotic Freedom Color Confinement

- Although we know the QCD Lagrangian, we have only begun to understand its remarkable properties and features.
- Novel QCD Phenomena: hidden color, color transparency, intrinsic charm, anomalous heavy quark phenomena, anomalous spin-spin effects, odderon, anomalous Regge behavior ...
- Remarkable Predictions of AdS/CFT

Truth is stranger than fiction, but it is because Fiction is obliged to stick to possibilities.

—Mark Twain

 $\frac{1}{2}$ 2000 4

NNPSS QCD Phenomenology Stan Brodsky, SLAC

Quarks in the Proton

Feynman: "Parton" model

Bjorken Scaling: Pointlike Quarks

July 2006

 $p = (u u d)$

NNPSS

NNPSS

stan Brodsky, SLAC

5

Zweig: "Aces, Duces, Treys"

for Mr. Mark"

The Quark Structure of the Nucleus e Structure of t

$$
p = (uud)
$$
\n
$$
p = (uud)
$$
\n
$$
n = (ddu)
$$
\n
$$
n = (ddu)
$$
\n
$$
n = (ddu)
$$
\n
$$
p = 0
$$
\n
$$
2e_u + e_d = e_p
$$
\n
$$
2 \times (\frac{1}{3}) + 1 \times (-\frac{1}{3}) = 1
$$
\n
$$
QCD Phenomenology
$$
\n
$$
Stan Brodsky, SLAC
$$

July 2006 $6⁶$ *eu* + *ed* = *ep* 2*ed* + *eu* = *en* July 2006

 LAC

SLAC Two-Mile Linear Accelerator

f_{0} \mathbf{r} i S r k $\cdot \mathcal{Q}v$ tri *First Evidence for Quark Structure of Matter*

Deep Inelastic Electron-Proton Scattering $\frac{3}{3}$ rela

 $y 2000$ 9 $\overline{2}$ 1 July

NNPSS QCD Phenomenology Stan Brodsky, SLAC n
Reds

ansfer Q asure rate Measure rate as a function of energy loss ν and momentum transfer Q
example of fixed x = Q^2 = 1 $\frac{2}{\pi}$ Scaling at fixed $x_{Bjorken} = \frac{Q^2}{2M_p\nu}$ $=$ $\frac{1}{\cdot}$ $\overline{\omega}$

Discovery of Bjorken Scaling **Electron scatters on point-like quarks!** Scaling at fixed *xBjorken* ⁼ *^Q*² 2*Mp*ν $\frac{1}{2}$ ω *ep* → *e*" *X*

QCD Phenomenology Stan Brodsky, SLAC

Constructing mesons

$$
M=(q\bar{q})
$$

$$
\pi^+ = (u\bar{d})
$$

Pseudoscalar ($J^P = 0^-$) (upper lines) and vector ($J^P = 0^-$) (lower lines) mesons with different flavour content. *ns with different flavour*

NNPSS QCD Phenomenology Stan Brodsky, SLAC QCD Phenomenology \mathbf{m}

eur = +2
eur = +2
eur = +2
eur = +2
 eur = +2
 eur = +2

Ne'eman, Gell Mann, Zweig Y. Eisenberg Samios

The Hadron Spectrum

Prediction and Measurement of Ω− = (*sss*)

QCD Phenomenology

Stan Brodsky, SLAC NNPSS QCD Phenomenology

Pauli Exclusion Principle! Why are there three colors of quarks?

spin-half quarks cannot be in same quantum state !

NNPSS QCD Phenomenology Stan Brodsky, SLAC Data: *n* = 9*.*7 *±* 0*.*5 Data: *n* = 9*.*7 *±* 0*.*5 \overline{O} $\overline{$ 3 Colors Combine : WHITE *d*σ *dt* (*K*+*^p* [→] *^K*+*p*) ⁼ **QCD** Phenomenology *Three Colors (Parastatistics) Solves Paradox* ϵ *e***nberg:** $k_{\rm V}$ **SI** AC *J^z* = +³ 2 $\frac{1}{\sqrt{1-\frac{1}{2}}}$ *<u><i>J*</u>
*J*_z *a*
*J*_z *a*
*J*_z Greenberg: Parastatistics

July 2006

QCD Lagrangian

Generalization of QED

Yang Mills Gauge Principle: Color Rotation and Phase Invariance at Every Point of Space and Time

Scale-Invariant Coupling Renormalizable Nearly-Conformal Asymptotic Freedom Color Confinement

July 2006 $_{15}$

NNPSS QCD Phenomenology Stan Brodsky, SLAC

$$
\mathcal{L}=-\tfrac{1}{4}F_{\mu\nu}^{\alpha}F_{\alpha}^{\mu\nu}-\sum_{n}\bar{\psi}_{n}\gamma^{\mu}[\partial_{\mu}-igA_{\mu}^{\alpha}t_{\alpha}]\psi_{n}-\sum_{n}m_{n}\bar{\psi}_{n}\psi_{n}
$$

$$
[t_{\beta},t_{\gamma}]=iC_{\beta\gamma}^{\alpha}t_{\alpha}
$$

where $C_{\beta\gamma}^{\alpha}$ are the SU(3) algebra structure constants where $\mathcal{C}^{\mathfrak{a}}$ are the $\mathrm{SI}(3)$ algebra structure constants where $\epsilon_{\beta\gamma}$ are the EU(e) arguera structure constants $t_{\rm max}$ the third term in R as a result, gluons interact with one another α where $C_{\vec{\beta}\gamma}$ are the SU(3) algebra structure constants

The gluon field tensors $F^{\alpha}_{\mu\nu}$ are defined as The last term in (21) describes the six free quarks of masses at rest. This does not mean that is does not mean The gluon field tensors $F^{\alpha}_{\mu\nu}$ are defined as

acceleration. Each free $\mathcal{L}_{\mathcal{A}}$ obeys the same Dirac equation as the electron in $\mathcal{L}_{\mathcal{A}}$

$$
F_{\mu\nu}^{\alpha}=\partial_{\mu}A_{\nu}^{\alpha}-\partial_{\nu}A_{\mu}^{\alpha}+C_{\beta\gamma}^{\alpha}A_{\mu}^{\beta}A_{\nu}^{\gamma}.
$$

Quarks couple to gluons through the color currents given by the last term and the last term in Eq. (21). Quarks couple to gluons through the color currents, which Quarks couple to gluons through the color currents

$$
J^\mu_\alpha = -ig \sum_n \bar{\psi}_n \gamma^\mu A_\mu^\alpha t_\alpha \psi_n.
$$

NNPSS QCD Phenomenology Stan Brodsky, SLAC
Iuly 2006 July 2006 QCD Pher
16 $\frac{1}{2}$ colors of $\frac{1}{2}$ and $\frac{1}{2}$ red, $\frac{1}{2}$ reality, $\frac{1}{2}$ reality, $\frac{1}{2}$ \mathcal{C} and eight-dimensional vector representation for \mathcal{C} \mathcal{J}^{in} \mathcal{J} . We cannot give any numerical value to this parameter, numerical value to this parameter, \mathbf{u} J^{u} as aspect a few paragraphs below; here we only note that all quarks couple to the set of that all quarks couple to the set of the set

colors of gluons have nothing to do with red, blue, and green of quarks are all the set of α QCD Phenomenology

Sec. 2.2, they are richer in two aspects. First, each of them appears in three variants, red, blue, and green.

Fundamental Couplings

Only quarks and gluons involve basic vertices: Quark-gluon vertex

QCD

July 2006 $NNPSS$

QCD Phenomenology

18

Verification of Asymptotic Freedom

Ratio of rate for $e^+e^- \rightarrow q\bar{q}g$ to $e^+e^- \rightarrow q\bar{q}$ at $Q = E_{CM} = E_{e^-} + E_{e^+}$

July 2006 $_{19}$ at *Q* = *ECM* = *Ee*[−] + *E*

NNPSS QCD Phenomenology Stan Brodsky, SLAC $\sqrt{2}$

QCD Lagrangian

$$
\lim N_C \to 0 \text{ at fixed } \alpha = C_F \alpha_s, n_\ell = n_F / C_F \qquad [C_F = \frac{N_C^2 - 1}{2N_C}]
$$

e hacytic a Analytic limit of QCD: Abelian Gauge Theory FH(*Q*2) [×] [*Q*2]

> P. Huet, sjb [*Q*2] *n*² *F₁* sib

July 2006 $_{20}$

NNPSS QCD Phenomenology

Stan Brodsky, SLAC

 $\text{July } 2006$ 21

QCD Phenomenology Stan Brodsky, SLAC

Binger, sjb

July 2006 22

QCD Phenomenology Stan Brodsky, SLAC

Given the elementary gauge theory interactions, all fundamental processes described in principle! *Example from QED:* Electron gyromagnetic moment - ratio of spin precession frequency to Larmor frequency in a magnetic field $\frac{1}{2} g_e = 1.001$ 159 652 201(30) $\frac{1}{2} g_e = 1.001$ 159 652 193(10) QED prediction (Kinoshita, et al.) $N_c=0$

ge accurate to 11 figures!

Measurement (Dehmelt, et al.)

Dirac: $g_e \equiv 2$

NPSS QCD Phenomenology Stan Brodsky, SLAC

Radiative Corrections of Eighth- and Tenth-Orders to Lepton g-2

Toichiro Kinoshita ^a

aLaboratory for Elementary-Particle Physics Cornell University Ithaca, NY 14853, USA E-mail: tk@hepth.cornell.edu

Nuclear Physics B (Proc. Suppl.) 157 (2006) 101-105

Phenomenology and all \sim $\overline{0.6}$ of the approaches was to re-**PLACE THE HOMEHOLOGY**

Stan Brodsky, SLAC

Phys. Rev. Lett. 23, 441–443 (1969)

PHOTON-PHOTON SCATTERING CONTRIBUTION TO THE SIXTH-ORDER MAGNETIC MOMENT OF THE MUON*

Janis Aldinst and Toichiro Kinoshita Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14850

and

Stanley J. Brodsky and Andrew J. Dufner Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305 (Received 25 July 1969)

We report a calculation of the three-photon-exchange (electron-loop) contribution to the sixth-order anomalous magnetic moment of the muon. Our result, which contains a logarithmic dependence on the muon-to-electron mass ratio, brings the theoretical prediction into agreement with the CERN measurements, within the 1-standard-deviation experimental accuracy.

$$
\Delta a_{\text{ph-ph}} = [(6.4 \pm 0.1) \ln(m_{\mu}/m_e) + \text{const}]
$$

×(α/π)³.

July 2006 $_{25}$

NNPSS QCD Phenomenology Stan Brodsky, SLAC

High-Precision Atomic Physics Tests of QED

All Accurate to ppm

- Lamb Shift in Hydrogen
- Hyperfine splitting of muonium and hydrogen
- Muonic Atom spectroscsopy
- Positronium Lifetime

Crucial tool of atomic physics: Wavefunctions

QCD Phenomenology

Stan Brodsky, SLAC NNPSS

Electron-Positron Annihilation e⁺

$$
e^+e^-\to\gamma^*\to\mu^+\mu^-
$$

NNPSS QCD Phenomenology Stan Brodsky, SLAC **QCD** Phenomenology

e*e*+*e*+*e*+*e*+*e*+*e*+*e*+*e*+*e+*_{e+}*e+e+e+*_{e+}*e+*_{e+}*e+* $\frac{1}{2}$

µ⁺ \overline{A} *Electron-Positron Annihilation*

^e+*e*[−] [→] ^γ[∗] [→] *^µ*+*µ*[−] *^e*+*e*[−] [→] ^γ[∗] [→] *qq*¯ **1**^{*µ*} γ∗ and number of colors *Rate proportional to quark charge squared* ^σ(*e*+*e*−→hadrons) $\frac{dx}{dt}$ charge squar

$$
R_{e^+e^-}(E_{cm}) = N_{colors} \times \sum_q e_q^2
$$

QCD Phenomenology

 $\frac{1}{2}$

NNPSS

1 1 and 5 an Brodsky, SLAC

1 and 2006

Hadron Dynamics at the Amplitude Level

- DIS studies have primarily focussed on probability distributions: integrated and unintegrated.
- Impact of ISI and FSI: Single Spin Asymmetries, Diffractive Deep Inelastic Scattering, Shadowing, Anti-shadowing
- Test QCD at the amplitude level: Phases, multiparton correlations, spin, angular momentum, exclusive processes
- Wavefunctions: Fundamental QCD Dynamics

QCD Phenomenology

Wavefunctions: Fundamental description of composite systems

- Basic quantum mechanical quantities in atomic and nuclear physics
- Physics at the amplitude level
- **Schrödinger** wavefunction in nonrelativistic theory
- Relativistic formulation: Bethe Salpeter amplitudes evaluated at fixed time t
- Problem: "Instant" form: Frame-dependent

QCD Phenomenology

Stan Brodsky, SLAC NNPSS

Light-Front Wavefunctions *r* + *P* + *P*

 $\mathbf{P} \mathbf{P}^{\mathbf{u}}$ \longrightarrow $\mathbf{P} \mathbf{P}^{\mathbf{u}}$ \longrightarrow $\mathbf{P} \mathbf{P}^{\mathbf{u}}$ Invariant under boosts! Independent of P^{lu}

July 2006 33

NNPSS QCD Phenomenology Stan Brodsky, SLAC **i**=1(*x*) = QCD Phenomenology = $Stan$ Brodsky

Light-Front Wavefunctions

Dirac's Front Form: Fixed $\tau = t + z/c$

July 2006 ³⁴ ^ψ(*x,k*⊥) H*QCD LF [|]*^ψ *>*⁼ *^M*2*|*^ψ *> xi* = *k*⁺ *i P* ⁺ Invariant under boosts. Independent of P^µ

Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

Stan Brodsky, SLAC NNPSS QCD Phenomenology

 $H_{LC}^{QCD}|\Psi_h\rangle = \mathcal{M}_h^2|\Psi_h\rangle$ *, ^P* [−]*, ^P*!⊥) with *^P [±]* ⁼ *^P*⁰ *[±] ^P*³ LC in M_1^2

In terms of the hadron four-momentum *P* = P_n $\vert \Psi_h \rangle$ \vert \qquad \q from the Hamiltonian for a LFWFS from <u>hadronic composite system</u> $\frac{1}{p}$ first principles $\frac{1}{\pm}$, has eigenvalues $\frac{1}{\pm}$ The hadron state **in a Fock-**
 *γ is exp*anded in a fock-^{*p*} first t

$$
H_{LC}^{QCD} = P_{\mu}P^{\mu} = P^-P^+ - \vec{P}_{\perp}^2
$$

The hadron state $|\Psi_h\rangle$ is expanded in a Fockthe mass spectrum of the mass spectrum of the complete basis of non-interacting n particle states $|n\rangle$ with an infinite number of components components
[|] particle states *|n*! with an infinite number of The hadron state $|\Psi_k\rangle$ is expanded in a Fock- $\frac{1}{2}$ + $\frac{1}{2}$ \overline{a}

$$
\vert \Psi_h(P^+,\vec{P}_\perp)\rangle =
$$

$$
\sum_{n,\lambda_i} \int \left[dx_i \ d^2 \vec{k}_{\perp i} \right] \psi_{n/h}(x_i, \vec{k}_{\perp i}, \lambda_i)
$$

$$
\times |n : x_i P^+, x_i \vec{P}_\perp + \vec{k}_{\perp i}, \lambda_i \rangle
$$

$$
\sum_n \int [dx_i \ d^2 \vec{k}_{\perp i}] |\psi_{n/h}(x_i, \vec{k}_{\perp i}, \lambda_i)|^2 = 1
$$

front frame independent Hamiltonian for a

Stan Brodsky, SLAC NNPSS QCD Phenomenology

$$
\sum_{i=1}^{n} x_{i} = 1 \qquad \sum_{i=1}^{n} \vec{k}_{\perp i} = \vec{0}_{\perp}
$$
\n
$$
\sum_{i=1}^{n} k_{i}^{+} = \sum_{i=1}^{n} x_{i} \vec{P}^{+} = \vec{P}^{+} \qquad \sum_{i=1}^{n} (x_{i} \vec{P}_{\perp} + \vec{k}_{\perp i}) = \vec{P}_{\perp}
$$
\n
$$
\mathbf{\Psi}_{n} (x_{i}, \vec{k}_{\perp i}, \lambda_{i}) \qquad x_{i} \vec{P}^{+}, x_{i} \vec{P}_{\perp} + \vec{k}_{\perp i}
$$

$$
\vec{\ell}_j \equiv (\vec{k}_{\perp} \times \vec{b}_{\perp})_j = (\vec{k}_{\perp} \times \frac{i\partial}{\partial \vec{k}_{\perp}})_j
$$

!*n ⁱ* !*b*⊥*ⁱ* ⁼ ! r_i $j = 1, 2, \cdots (n-1)$!"*ⁱ* ⁼ !*b*⊥*ⁱ* [×] ! *^k*⊥*ⁱ* n-1 Intrinsic Orbital Angular Momenta !"*^j* [≡] (!*b*[⊥] [×] ! *^L*\$ ⁼ *^R*\$ [×] *^P*\$ *j* = 1*,* 2*, · · ·* (*n* − 1)

 QCD Phenomenology

Enomenology
36 Stan Brodsky, SLAC

Ingular thomentum on the light-crone Angular Momentum on the Light-Front

 $\frac{z}{j}$. Conserved Conserved LF Fock state by Fock State

$$
l_j^z = -i \left(k_j^1 \frac{\partial}{\partial k_j^2} - k_j^2 \frac{\partial}{\partial k_j^1}\right)
$$
 n-*r* orbital angular momenta

NNPSS QCD Phenomenology Stan Brodsky, SLAC $\ddot{\mathbf{c}}$ of mass, which is not an intrinsic property of the hadron.

I FWFs of Flectron $(n-2)$ LFWFs of Electron (n=2)

 $\begin{cases} \psi_{+\frac{1}{2}+1}^{\uparrow}(x,\vec{k}_{\perp})=-\sqrt{2}\frac{(-k^{1}+ik^{2})}{x(1-x)} \\ \psi_{+\frac{1}{2}-1}^{\uparrow}(x,\vec{k}_{\perp})=-\sqrt{2}\frac{(+k^{1}+ik^{2})}{1-x} \end{cases}$

 $\sqrt{ }$

 $\frac{1}{\sqrt{2\cdot$ √1ives Sch
Anoma
Mome Nomalous
Moment [√]2(^M [−] ^m $\sqrt{2\frac{1}{2}}$ ^x(1−x) ^ϕ , Gives Schwinger Momarous
Moment [√]2(^M [−] ^m Moment α 2π

 $\overline{\mathcal{M}}$

 $\overline{}$

$$
J_z = +\frac{1}{2}
$$

$$
L_z = -1
$$

$$
L_z=1
$$

. (a) $\mathcal{O}(1)$

$$
\begin{cases}\n\psi_{+\frac{1}{2}-1}^{\uparrow}(x,\vec{k}_{\perp}) = -\sqrt{2}\frac{(+k^{1}+ik^{2})}{1-x}\varphi, & L_{z} = 1 \\
\psi_{-\frac{1}{2}+1}^{\uparrow}(x,\vec{k}_{\perp}) = -\sqrt{2}(M - \frac{m}{x})\varphi, & L_{z} = 0 \\
\psi_{-\frac{1}{2}-1}^{\uparrow}(x,\vec{k}_{\perp}) = 0, & \n\end{cases}
$$

 $\frac{-\kappa^2 + 1\kappa^2}{x(1-x)} \varphi$,

where

 $M \rightarrow 1$

$$
\varphi = \varphi(x, \vec{k}_{\perp}) = \frac{e/\sqrt{1-x}}{M^2 - (\vec{k}_{\perp}^2 + m^2)/x - (\vec{k}_{\perp}^2 + \lambda^2)/(1-x)}.
$$

Spin-1/2 mass m k $\int \psi_{+\frac{1}{2}}^{\frac{1}{2}}$

$$
\begin{aligned}\n\mathbf{Spin}\text{-}\mathbf{I} \quad \text{mass} \quad \lambda \\
\mathbf{Spin}\text{-}\mathbf{I} \quad \text{mass} \quad \lambda \\
\text{Spin}\text{-}\mathbf{I} \quad \text{mass} \quad \mathbf{m} \\
\text{Spin}\text{-}\mathbf{I} \quad \text{mass} \quad \mathbf{m} \\
\psi_{+\frac{1}{2}-1}^{\downarrow}(x, \vec{k}_{\perp}) &= -\sqrt{2}(M - \frac{m}{x})\varphi \,, \\
\psi_{-\frac{1}{2}+1}^{\downarrow}(x, \vec{k}_{\perp}) &= -\sqrt{2}\frac{(-k_{\perp}^{\uparrow} + \mathrm{i}k_{\perp}^{\uparrow})}{1-x}\varphi \,, \\
\psi_{-\frac{1}{2}-1}^{\downarrow}(x, \vec{k}_{\perp}) &= -\sqrt{2}\frac{(+k_{\perp}^{\uparrow} + \mathrm{i}k_{\perp}^{\uparrow})}{x(1-x)}\varphi \,. \\
\text{J} \quad \text
$$

July 2006 38 $6\,$ July 2006 NNPSS uly 2000

)spin−1 diquark

QCD Phenomenology
38 Stan Brodsky, SLAC

Quantum Mechanics: Uncertainty in p, r, spin

Relativistic Quantum Field Theory: Uncertainty in particle number n

Invariant under boosts. Independent of P^{ll}

NNPSS QCD Phenomenology Stan Brodsky, SLAC
aly 2006

Stan Brodsky, SLAC NNPSS QCD Phenomenology July 2006 ⁴¹

Hadrons Fluctuate in Particle Number

• Proton Fock States
|uud >,|uudg >,|uuds \bar{s} >,|uudc \bar{c} >,|uudb \bar{b} > \cdots

- $s(x) \neq \overline{s}(x)$ • Strange and Anti-Strange Quarks not Symmetric
- "Intrinsic Charm": High momentum heavy quarks
- "Hidden Color": Deuteron not always $p + n$
- $|uud>,|uuds>,|uuds\bar{s}\rangle,|uudc\bar{c}\rangle,|uudb\bar{b}\rangle\cdots$

 Strange and Anti-Strange Quarks not Syr

 "Intrinsic Charm": High momentum heav

 "Hidden Color": Deuteron not always p

 Orbital Angular Momentum Fluctuations

Anomal • Orbital Angular Momentum Fluctuations -Anomalous Magnetic Moment

Stan Brodsky, SLAC NNPSS QCD Phenomenology

July 2006 $\frac{43}{10}$

NNPSS QCD Phenomenology Stan Brodsky, SLAC

S. Kretzer; B.Q. Ma and sjb

July 2006

QCD Phenomenology
44 Stan Brodsky, SLAC

July 2006 $\frac{45}{3}$

NNPSS QCD Phenomenology Stan Brodsky, SLAC

Example 2016

\nSince the following

\n
$$
\frac{d_{11} + d_{12} + d_{13} + d_{14} + d_{15} + d_{16} + d_{17}}{d_{11} + d_{12} + d_{13} + d_{14} + d_{15} + d_{16} + d_{17} + d_{18} + d_{19} + d_{19} + d_{19} + d_{19} + d_{19} + d_{10} + d_{10} + d_{11} + d_{10} + d_{11} + d_{10} + d_{11} + d_{12} + d_{13} + d_{14} + d_{15} + d_{16} + d_{17} + d_{18} + d_{19} + d_{11} + d_{12} + d_{13} + d_{14} + d_{15} + d_{16} + d_{17} + d_{18} + d_{19} + d_{11} + d_{12} + d_{13} + d_{14} + d_{15} + d_{16} + d_{17} + d_{18} + d_{19} + d_{11} + d_{12} + d_{13} + d_{14} + d_{15} + d_{16} + d_{17} + d_{18} + d_{19} + d_{19} + d_{10} + d_{11} + d_{12} + d_{13} + d_{14} + d_{15} + d_{16} + d_{17} + d_{18} + d_{19} + d_{19} + d_{10} + d_{11} + d_{12} + d_{13} + d_{14} + d_{15} + d_{16} + d_{17} + d_{18} + d_{19} + d_{19} + d_{10} + d_{11} + d_{12} + d_{13} + d_{14} + d_{15} + d_{16} + d_{17} + d_{18} + d_{19} + d_{19} + d_{10} + d_{11} + d_{12} + d_{13} + d_{14} + d_{15} + d_{16} + d_{19} + d_{10} + d_{11} + d_{12} + d_{13} + d_{14} + d_{15} + d_{16} + d_{17} + d_{19} + d_{10} + d_{11} + d_{12} + d_{13} + d_{14} + d_{15} + d_{16} + d_{19} + d_{10} + d_{11
$$

July 2006 ⁴⁶

QCD Phenomenology
46 and Stan Brodsky, SLAC 46

Exact Representation of Form Factors using LFWFs

Hadron form factors can be expressed as a sum of overlap integrals of light-front wave functions:

$$
F(q^2) = \sum_{n} \int \left[dx_i \right] \left[d^2 \vec{k}_{\perp i} \right] \sum_{j} e_j \psi_n^*(x_i, \vec{k}'_{\perp i}, \lambda_i) \psi_n(x_i, \vec{k}_{\perp i}, \lambda_i), \qquad (1)
$$

where the variables of the light-cone Fock components in the final-state are given by

$$
\vec{k}'_{\perp i} = \vec{k}_{\perp i} + (1 - x_i) \, \vec{q}_{\perp},\tag{2}
$$

for a struck constituent quark and

$$
\vec{k}'_{\perp i} = \vec{k}_{\perp i} - x_i \ \vec{q}_{\perp},\tag{3}
$$

for each spectator. The momentum transfer is $q^2 = -\vec{q}^2 = -2P \cdot q = -Q^2$. The measure of the phase-space integration is

$$
\[dx_i\] = \prod_{i=1}^n \frac{dx_i}{\sqrt{x_i}} \delta\left(1 - \sum_{j=1}^n x_j\right),\tag{4}
$$

$$
\left[d^2\vec{k}_{\perp i}\right] = (16\pi^3) \prod_{i=1}^n \frac{d^2\vec{k}_{\perp i}}{16\pi^3} \delta^{(2)}\left(\sum_{\ell=1}^n \vec{k}_{\perp \ell}\right). \tag{5}
$$

July 2006 47 momentum *^R*! [⊥] in terms of the energy momentum tensor *^T ^µ*^ν

QCD Phenomenology

ENOTHEROLOGY
47 Stan Brodsky, SLAC

$$
L_1 g_{++} + F_{out} \text{Quot} \text{y}_0
$$
\n
$$
= \sqrt{2} \int_{\frac{\pi}{2}}^{2\pi} f(x) dx
$$

July 2006

QCD Phenomenology
48 Stan Brodsky, SLAC

$$
\frac{F_2(q^2)}{2M} = \sum_a \int [\mathrm{d}x][\mathrm{d}^2\mathbf{k}_\perp] \sum_j e_j \frac{1}{2} \times \text{Drell, sjb}
$$
\n
$$
\left[-\frac{1}{q^L} \psi_a^{\dagger*}(x_i, \mathbf{k}'_{\perp i}, \lambda_i) \psi_a^{\dagger}(x_i, \mathbf{k}_{\perp i}, \lambda_i) + \frac{1}{q^R} \psi_a^{\dagger*}(x_i, \mathbf{k}'_{\perp i}, \lambda_i) \psi_a^{\dagger}(x_i, \mathbf{k}_{\perp i}, \lambda_i) \right]
$$
\n
$$
\mathbf{k}'_{\perp i} = \mathbf{k}_{\perp i} - x_i \mathbf{q}_{\perp}
$$
\n
$$
\mathbf{k}'_{\perp j} = \mathbf{k}_{\perp j} + (1 - x_j) \mathbf{q}_{\perp}
$$
\n
$$
\mathbf{k}'_{\perp j} = \mathbf{k}_{\perp j} + (1 - x_j) \mathbf{q}_{\perp}
$$
\n
$$
\mathbf{k}'_{\perp j} = \mathbf{k}_{\perp j} + \mathbf{q}_{\perp}
$$
\n
$$
\mathbf{k}'_{\perp j} = \mathbf{k}_{\perp j} + \mathbf{q}_{\perp}
$$
\n
$$
\mathbf{k}'_{\perp j} = \mathbf{k}_{\perp j} + \mathbf{q}_{\perp}
$$
\n
$$
\mathbf{p}, \mathbf{S}_z = -1/2
$$

Must have $\Delta \ell_z = \pm 1$ to have nonzero $F_2(q^2)$ ' ¹ [−] !*ⁿ* ^δ(2) '!*ⁿ*

dependence in the arguments of the light-front wave functions. The phase-space

July 2006 $\frac{49}{49}$ *i*_{*i*}*s<i>i*</sup> where $n = 1$ denotes the number of constituents in Fock state α and we sum over the sum o

 μ , \cup _Z⁻

integration is

NNPSS
 IVACCO Phenomenology Stan Brodsky, SLAC $\frac{1}{\sqrt{1 - \frac{1}{\sqrt{1 -$ **QCD Phenomenology**

Light-Cone Wavefunction Representations of Anomalous Magnetic Moment and Electric Dipole 2.1 Electric Dipole Moment Form Factor of the Moment Form Factor of the United States of the Moment Form Factor of the United States of th Information, the extensive system of and Pauli Form \sum ₁ \sum ₁ \sum

August 28, 2005 *F*2(*q*²), electric dipole moment form factor *F*3(*q*²) are defined by $F_2(q^2)$, electric dipole moment form factor $F_3(q^2)$ are defined by In the case of a spin- $\frac{1}{2}$ composite system, the Dirac and Pauli form factors $F_1(q^2)$ and

$$
\langle P'|J^{\mu}(0)|P\rangle = \overline{U}(P') \left[F_1(q^2)\gamma^{\mu} + F_2(q^2) \frac{i}{2M} \sigma^{\mu\alpha} q_{\alpha} + F_3(q^2) \frac{-1}{2M} \sigma^{\mu\alpha} \gamma_5 q_{\alpha} \right] U(P) , \tag{47}
$$

• P, C, T on the LF Γ compute methix elements of good current I_{\pm} compute matrix elements of good current J^+ where *q^µ* = (*P*! − *P*)*^µ* and *u*(*P*) is the bound state spinor. In the light-cone formal-Compute matrix elements of good current I^+ Compute matrix elements of good current J+

$$
F_1(q^2) = \left\langle P+q, \uparrow \left| \frac{J^+(0)}{2P^+} \right| P, \uparrow \right\rangle = \left\langle P+q, \downarrow \left| \frac{J^+(0)}{2P^+} \right| P, \downarrow \right\rangle, \tag{48}
$$

$$
\frac{F_2(q^2)}{2M} = \frac{1}{2} \left[+ \frac{1}{-q^1 + iq^2} \left\langle P+q, \uparrow \left| \frac{J^+(0)}{2P^+} \right| P, \downarrow \right\rangle + \frac{1}{q^1 + iq^2} \left\langle P+q, \downarrow \left| \frac{J^+(0)}{2P^+} \right| P, \uparrow \right\rangle \right],
$$

$$
\frac{F_3(q^2)}{2M} = \frac{i}{2} \left[+ \frac{1}{-q^1 + iq^2} \left\langle P+q, \uparrow \left| \frac{J^+(0)}{2P^+} \right| P, \downarrow \right\rangle - \frac{1}{q^1 + iq^2} \left\langle P+q, \downarrow \left| \frac{J^+(0)}{2P^+} \right| P, \uparrow \right\rangle \right]. \tag{50}
$$

July 2006 51

p⁺ + *m*

NNPSS QCD Phenomenology Stan Brodsky, SLAC)γ⁺ *U*(*P,* λ) = δλ*,* ^λ! *,* (51)

Relation between edm and anomalous magnetic moment **Relation between edm and anomalous m** *F*2(*q*²) $\frac{1}{2}$ ion betwee \$ d²! *k*⊥d*x* **(iiii)** $\overline{1}$ *a*^j \overline{C} nalous magnetic moment

$$
\frac{F_2(q^2)}{2M} = \sum_{a} \int \frac{\mathrm{d}^2 \vec{k}_{\perp} \mathrm{d}x}{16\pi^3} \sum_{j} e_j \frac{1}{2} \times
$$
\n
$$
\left[+ \frac{1}{-q^1 + \mathrm{i}q^2} \psi_a^{\dagger *} (x_i, \vec{k}'_{\perp i}, \lambda_i) \psi_a^{\dagger} (x_i, \vec{k}_{\perp i}, \lambda_i) + \frac{1}{q^1 + \mathrm{i}q^2} \psi_a^{\dagger *} (x_i, \vec{k}'_{\perp i}, \lambda_i) \psi_a^{\dagger} (x_i, \vec{k}_{\perp i}, \lambda_i) \right]
$$
\nDrell, sjb,

$$
\frac{F_3(q^2)}{2M} = \sum_{a} \int \frac{\mathrm{d}^2 \vec{k}_{\perp} \mathrm{d}x}{16\pi^3} \sum_{j} e_j \frac{i}{2} \times
$$
\n
$$
\left[+ \frac{1}{-q^1 + \mathrm{i}q^2} \psi_a^{\dagger*}(x_i, \vec{k}'_{\perp i}, \lambda_i) \psi_a^{\dagger}(x_i, \vec{k}_{\perp i}, \lambda_i) - \frac{1}{q^1 + \mathrm{i}q^2} \psi_a^{\dagger*}(x_i, \vec{k}'_{\perp i}, \lambda_i) \psi_a^{\dagger}(x_i, \vec{k}_{\perp i}, \lambda_i) \right],
$$
\nGardner Hwang sh

 $Gardner$, Hwang, sjb, Gardner, Hwang, sjb,

$$
\vec{k}'_{\perp i} = \vec{k}_{\perp i} + (1 - x_i)\vec{q}_{\perp}
$$
 struck quark
$$
\vec{k}'_{\perp i} = \vec{k}_{\perp i} - x_i\vec{q}_{\perp}
$$
spectator
July 2006
Stan Brodsky, SLAC

 $F_3(q^2) = F_2(q^2) \times \tan \phi$ *^F*3(*q*2) ⁼ *^F*2(*q*2) [×] tan ^φ *CP-violating phase of LFWF*

Fock state by Fock state

Gardner, Hwang, sjb,

New relation between d_n and d_p

NNPSS QCD Phenomenology Stan Brodsky, SLAC

Nuclear Chromodynamics: Novel Effects of QCD in Nuclear Systems

- QCD Color Transparency and Opaqueness
- Hidden Color
- Exclusive Nuclear Reactions, $x > 1$
- Nuclear shadowing and antishadowing
- Diffractive Phenomena

Exclusive Processes

Probability decreases with number of constituents! [∆]*^x* [×] [∆]*^p > ^h* .
Ω'

July 2006 55

NNPSS QCD Phenomenology Stan Brodsky, SLAC

1*fm* = 10−15*m* = 10−13*cm*

Nucleon Form Factors

Nucleon current operator (Dirac & Pauli)

$$
\Gamma^{\mu}(q)=\gamma^{\mu}F_{1}(q^{2})+\frac{i}{2M_{N}}\sigma^{\mu\nu}q_{\nu}F_{2}(q^{2})
$$

Electric and Magnetic Form Factors

$$
G_E(q^2) = F_1(q^2) + \tau F_2(q^2) \frac{q^2}{\tau} = \frac{q^2}{4M_N^2}
$$

$$
G_M(q^2) = F_1(q^2) + F_2(q^2) \frac{\tau}{4M_N^2}
$$

Elastic scattering
\n
$$
\frac{d\sigma}{d\Omega} = \frac{\alpha^2 E_e' \cos^2 \frac{\theta}{2}}{4E_e^3 \sin^4 \frac{\theta}{2}} \left[G_E^2 + \tau \left(1 + 2(1+\tau) \tan^2 \frac{\theta}{2} \right) G_M^2 \right] \frac{1}{1+\tau}
$$

$$
e^+e^- \rightarrow p\bar{p}
$$
\n
$$
\frac{d\sigma}{d\Omega} = \frac{\alpha^2\sqrt{1-1/\tau}}{4q^2} \left[(1+\cos^2\theta)|G_M|^2 + \frac{1}{\tau}\sin^2\theta|G_E|^2 \right]
$$

Simone Pacetti

 $\frac{dP}{dt}(q^2)/G_M^D(q^2)|$ and dispersion relations $)/$ *G* $_{\cal M}^{\rho}(q^2) |$ and dispersion relations

 $e^ \frac{p}{\sqrt{\theta}}$

 $e^ e^+$

 $\bm{\delta}$

 $\boldsymbol{\mathcal{D}}$

θ

 $\boldsymbol{\phi}$

QCD Phenomenology Stan Brodsky, SLAC

 R_{tan} R_{rad} R_{tan} R ^{*R*}(*e*+*e*⁺ $\frac{1}{2}$ $\$

2

 $\text{July }2006$ $\qquad \qquad \text{57}$

Brodsky, SLA

Hadron Distribution Amplitudes $\phi(x_i, Q) \equiv \prod_{i=1}^{n-1}$ \int ^Q $d^2\vec{k}_{\perp}$ $\psi_n(x_i,\vec{k}_{\perp i})$

- Fundamental measure of valence wavefunction
- Gauge Invariant (includes Wilson line)
- Evolution Equations, OPE

Lepage; SJB Efremov, Radyuskin

- Conformal Expansion
- Hadronic Input in Factorization Theorems

Proton Form Factor

Stan Brodsky, SLAC NNPSS QCD Phenomenology

Brodsky and Farrar, Phys. Rev. Lett. 31 (1973) 1153 Matveev et al., Lett. Nuovo Cimento, 7 (1973) 719

Quark Counting Rules for Exclusive Processes

- Power-law fall-off of the scattering rate reflects degree of compositeness
- The more composite -- the faster the fall-off
- Power-law counts the number of quarks and gluon constituents
- Form factors: probability amplitude to stay intact

 $F_H(Q) \propto \frac{1}{(Q^2)^{n-1}}$ $n = #$ elementary constituents •

Stan Brodsky, SLAC NNPSS

Quark counting rules predict: $[Q^2]^{n_H-1}F_H(Q^2) \longrightarrow$ constant

Timelike proton form factor in PQCD

$$
G_M(Q^2) \rightarrow \frac{\alpha_s^2(Q^2)}{Q^4} \sum_{n,m} b_{nm} \left(\log \frac{Q^2}{\Lambda^2} \right)^{\gamma_n^B + \gamma_n^B}
$$

$$
\times \left[1 + \mathcal{O}\left(\alpha_s(Q^2), \frac{m^2}{Q^2}\right) \right] \quad .
$$

Lenge and Sib apago and sp Lepage and Sjb

and the bin are determined from the value of the value of the value of the distribution \mathbf{r} **the quality of the point of the point of the point of the given point** QCD **Phenomenology**

NNPSS

2 and the NNPSS Stan Brodsky, SLAC \mathcal{L}

 $\overline{63}$

PQCD and Exclusive Processes Effenov, Radyu $M =$ $\int \prod dx_i dy_i \phi_F(x, \tilde{Q}) \times T_H(x_i, y_i, \tilde{Q}) \phi_I(y_i, Q)$ Efremov, Radyuskin

- Iterate kernel of LFWFs when at high virtuality; distribution amplitude contains all physics below factorization scale
- Rigorous Factorization Formulae: Leading twist
- Underly Exclusive B-decay analyses
- Distribution amplitude: gauge invariant, OPE, evolution equations, conformal expansions
- BLM scale setting: sum nonconformal contributions in scale of running coupling
- Derive Dimensional Counting Rules/ Conformal Scaling

QCD Phenomenology

64

Stan Brodsky, SLAC NNPSS

Timelike Proton Form Factor discrete the state of the s

Nicolas Berger **FIADRONT** 65

Test of quark counting rule: timelike form factors

NPSS QCD Phenomenology
y 2006 66

 $Stan Brodsky, SLA$ *sntot*−⁴

Conformal Behavior of LFWFs Predicted by AdS/CFT Leads to PQCD Scaling Laws

- Bjorken Scaling of DIS
- Counting Rules of Structure Functions at large x
- Dimensional Counting Rules for Exclusive Processes and Form Factors

